

Problema 1

Un sensore piezoelettrico a quarzo fornisce segnali impulsivi approssimativamente rettangolari con durata T_q e ampiezza V_q che si ripetono con frequenza r_q . Il sensore è collegato a un preamplificatore con ingresso ad alta impedenza, guadagno in tensione A_p , banda limitata da un polo semplice a frequenza f_p ; il rumore di tensione totale riferito all'ingresso del preamplificatore ha spettro di potenza S_p a banda molto larga. Si vuole misurare l'ampiezza V_q , ma il rapporto segnale/rumore (S/N) all'uscita del preamplificatore risulta troppo basso (S/N) \leq 1. Nella misura si vuole ottenere S/N > 50 e per questo è disponibile un filtro commutato passivo del tipo illustrato in Fig.1 (a) oppure in alternativa un filtro attivo del tipo illustrato in Fig.1 (b).

- 1) spiegare quali sono i parametri che determinano il funzionamento dei due filtri
- 2) spiegare con quali criteri li dimensionereste
- 3) spiegare di conseguenza come risulta la funzione peso di ciascuno dei due filtri

Problema 2

Per la situazione descritta nel Problema 1 i dati quantitativi siano: durata T_q = 10 μ s, ampiezza V_q = 4 μ V, frequenza di ripetizione r_q = 1kHz; densità efficace unilatera $(S_p)^{1/2}$ =10nV/ $(Hz)^{1/2}$, frequenza di taglio f_p = 200kHz, guadagno A_p =100. In queste condizioni:

- a) Valutare il rapporto segnale/rumore (S/N) all'uscita del preamplificatore
- b) Dimensionare ciascuno dei filtri sopra detti in modo da ottenere (S/N) = 100, valutando se vi siano problemi pratici per la loro realizzazione o no.
- c) Valutare l'ampiezza del segnale in uscita di ciascuno dei due filtri
- d) Considerare ora il caso in cui la frequenza di ripetizione venga cambiata portandola a r_q = 2kHz. Spiegare se questo cambiamento comporta modifiche nelle risposte precedenti o no; in caso affermativo indicare anche quantitativamente le modifiche.
- e) Considerare ora il caso in cui la frequenza di taglio del preamplificatore venga cambiata riducendola a f_p = 50kHz. Spiegare se questo cambiamento comporta modifiche nelle risposte precedenti o no; in caso affermativo indicare quali sono.

Problema 3

Un laser, che emette a lunghezza d'onda 800nm impulsi con durata T_L = 100ns, viene diretto su oggetti distanti e si vuole rivelare i segnali ottici riflessi e misurarne l'ampiezza. Gli oggetti in esame riflettono circa il 5% della potenza incidente e sono accettabili misure ottenute con $S/N \ge 5$. Avete a disposizione due diversi fotorivelatori: (a) un fotomoltiplicatore con catodo multialcali S20; (b) un fotodiodo al Silicio. Valutare la minima potenza ottica del laser necessaria per rivelare e misurare gli impulsi riflessi nei due casi. Per ciascun fotorivelatore utilizzate valori che ritenete tipici per i parametri significativi e scegliete come circuiti elettronici di amplificazione e filtraggio quelli che ritenete più adatti per la misura richiesta.