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PROBLEM 2 

Data and notes 

Applied Compression Force 

- Rectangular pulse with constant amplitude F and duration Tp = 5ms 

Piezoelectric force sensor 
- Aq=10pC/N  force-to-charge transduction factor  

- CL= 500pF total capacitance, sensor and circuit 

- generator Is represents the piezoelectric effect 

Preamplifier 

- RiA high input resistance, to be considered infinite 

- Wide Band-limit   fpa=50MHz  

- , 20 /v uS nV Hz=   (unilateral) wide band 

- , 0,2 /i uS pA Hz=   (unilateral) wide band 

- 1/f noise components have not to be considered 

Sinusoidal Electromagnetic Interference  
- fd=20kHz frequency, known with uncertainty   ±1%,   

- Amplitude at preamplifier input  Vd ≈ 100µV 

A) Optimum filtering 

Noise is not white, therefore:  optimum filter = noise whitening filter plus matched filter 
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noise whitening filter = CR differentiator with time constant  RC=Tnc  
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“Whitened” noise B vS S=  

Rectangular signal = positive step with amplitude VF at t=0 plus negative step with amplitude VF at 

t= TP.    

Signal after the whitening filter= positive exponential pulse at t=0 plus equal but negative 

exponential pulse a t= TP  . 

( ) [ ] ( ) ( ){ }2 1 exp / 1 exp /B F nc P P ncv V t t T t T t T T= ⋅ ⋅ − − − ⋅ − −    

Optimum weighting function of the matched filter:  
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There is practically no overlap of the two exponentials because  

P ncT T≫  

Therefore, the measurement on the rectangular pulse can be directly obtained from the sum of two 

measurements on simple step pulses. With respect to the measurement on a single step pulse, the 

measure on the rectangular pulse has 

1. Double signal amplitude 

2. double mean square noise  

3. S/N greater by a factor 2  

4. Minimum measurable amplitude smaller by a factor 2  

The single step signal at the output of the noise-whitening filter is 

( ) ( )1 1 exp /B F ncv V t t T= ⋅ ⋅ −  

its matched filter is 
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denoting by Sv,b the bilateral noise density of the “whitened” noise we get for the single step 
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The minimum amplitude at S/N=1 is  
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Therefore, for the rectangular pulse we get 
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B) Approximation of optimum filtering by a constant parameter filter 

Also in this case the measurement on the rectangular pulse is obtained from the sum of two 

measurements on simple step pulses and we analyze first the measure of a single step pulse.  

The weighting function denotes that the matched filter it is a low-pass filter, therefore also its 

approximation must be a low-pass filter. A single-pole low-pass RC filter with  RC=Tnc  has 

weighting function in frequency with module equal to the optimum weighting function. Therefore, 

this RC filter will filter the white noise just like the optimum filter    

However, the action on the signal will not be the optimum.  

The signal corresponding to a single step at the whitening filter output is  
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The low-pass filter has 
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The low-pass filter output is 
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The measure is taken at the maximum of the output pulse, which occurs at t=Tnc and is 
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Therefore, with the rectangular pulse we get a minimum amplitude 
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which is worse than the optimum by the factor 1,36 pointed out in the S/N. The minimum 

measurable force is higher by the same factor 
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C) Approximation of the optimum filtering by a switched-parameter filter 

Also in this case the measurement on the rectangular pulse is obtained from the sum of two 

measurements on simple step pulses, we analyze first the measure of a single step pulse and scale 

then the result to the case of rectangular pulse.  

As approximation of the optimum filtering we employ a simple Gated Integrator (GI) and select the 

gate duration TG for maximizing the S/N. Denoting by wG the GI weighting function we get at GI 
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that is, by denoting   = G
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   with  x≈1,25 attains its maximum  gmax ≈ 0,638 and gives a factor 

max2 0,9g =  . We can conclude that with  TG ≈1,25 Tnc ≈ 62,5 µs  we get a result not much 

inferior to the optimum filter, namely just 10% lower. 
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We note that the selection of TG is not critical, because the maximum of g(x) is very wide: from x=1 

to x=1,6 the function g(x) has small variation, just a few %. 

For the rectangular pulse we have then 
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and selecting x≈1,25 we get 
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and obtain a minimum measurable force 
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D) Filtering the electromagnetic interference  

The prospect of attenuating the electromagnetic interference signal by employing the filters already 

considered with minor modifications does not appear promising, because the interference frequency 

fd =20kHz is fairly near to the band-limits of these filters and is therefore just moderately 

attenuated. In fact: 

1) The whitening filter is a single-pole high-pass filter with the pole at frequency 

1 2 3h ncf T kHzπ= ≈   

2) The low-pass filter with RC=Tnc , employed as approximation of the matched filter, has the same 

pole frequency 1 2 3h ncf T kHzπ= ≈ . 

3) The gated integrator, employed with TG=62,5µs  as approximation of the matched filter, has 

action comparable to a low-pass RC filter with RC= TG/2≈31µs , that is, with pole at frequency 

1 2 5lf RC kHzπ= ≈ . 

However, the GI weighting function in frequency has also a sequence of local zeros at frequencies fz 

multiple of 1/TG, which can be well exploited for strongly attenuating the narrow-band disturbance. 

It is sufficient to make fz =1/TG  or a multiple of it coincident with the frequency fd=20kHz  of the 

interfering signal. This can be obtained by selecting TG  = 50µs and we know that this will cause  

very little degradation of the noise filtering. 

We have to consider, however, that nil interference transmission is achieved only with perfect 

coincidence of the GI-zero-frequency fz with the interference frequency fd. Perfect coincidence 

cannot be guaranteed since the interference frequency is known with limited precision; we have to 

consider the effect of deviations ∆f up to 1% between interference frequency fd  and GI-zero-

frequency fz. 

Since the relative deviation ∆f  is small, that is,  ∆f<< fz  we can evaluate the transmission with 

first-order approximation 

( )sin G

G

G

fT
W

fT

π
π

=  hence 
( ) ( )

2

cos sinG GG
fT fTdW

df f f

π π
= −  

At f=fz it is  ( )sin 1z Gf Tπ =  ( )cos 1z Gf Tπ =  hence 
1

z

G

zf f

dW

df f
=

=  

We can conclude that the residual transmission is simply given by the relative deviation in 

frequency of the interference signal with respect to the frequency of zero transmission. 
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In our case we have deviations up to 0,01d zf f∆ ≈ ± and therefore 0,01GW∆ ≈ ±  which causes a 

residual transmission of the disturbance  

1d GV W Vµ⋅∆ ≈ ±  

In comparison with the noise at the GI output  
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the residual disturbance is therefore acceptable 


