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PROBLEM 1 

Data 

SQUAREWAVE PULSE SIGNAL 

 is t A  constant amplitude A in 0 10Pt T s    

WHITE NOISE 

20buS nV Hz  unilateral ( 10bbS nv Hz   bilateral) 

SWITCHED INTEGRATORS  

Passive filter  R1 = 10kΩ   C1 to be selected  TF1 = R1 C1 

Active filter   R2 = 100kΩ R3 = 1kΩ C2  to be selected  TF2 = R2 C2 

REPETITIVE PULSE SIGNALS 

in (B) constant repetition frequency fR=100 Hz 

in (C) variable repetition frequency fR from 100 Hz to 200Hz 

in (D) random arrival times with mean repetition rate 100 pulses/s 

 

(A) Amplitude measurement of a single pulse  

A1) Filter weighting function 

With white noise the optimum filter weighting function is equal to the signal waveform, i.e. 
constant over the pulse duration TP.  

The weighting of a switched integrator filter in the interval 0<t< TP is  
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    with approximation valid for TF  >> TP 

In order to limit to less than 1% the deviation from constant weight we must have TF1 and TF2  at 
least  

TF1 = TF2 = TF = 100 TP = 1ms  

Therefore we select  

C1 = 100 nF   e   C2 = 10 nF  

In this condition the filter weighting function with good approximation has constant amplitude g 
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At the filter output we have 
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Noise    2 20g bb ww bb Pn S k S g T      (bilateral spectral density 2bb buS S )  
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A2) Minimum input pulse amplitude and corresponding output amplitude 

The S/N is equal for the two filters, independent from the “gain” g. Therefore, also the minimum 
input pulse amplitude is equal  
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However, the two filters have very different amplitude of the output signal.  

For the passive integrator the output amplitude is much lower than the input amplitude 
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For the active integrator, the output amplitude is equal to the input amplitude 
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A higher signal amplitude at the output of the filter is advantageous because it relaxes the 
requirements for the input noise and the amplification of the electronic circuits that follow the filter. 
These circuits have to amplify without adding significant noise the signal to be measured to bring it 
at proper level in the dynamic range of the measurement instrument (typically a ADC).  

The two filters have output signal with different waveform. The output of the passive filter is a 
constant voltage (the capacitor is in “hold” state) well measurable with an ADC. The output of the 
Active filter is an exponentially decaying voltage, but it is still suitable for an ADC because the 
decay constant is very long (1 ms)  

(B) Measurement of repetitive pulses with constant repetition rate  

The measurement of the pulse amplitude can be improved by obtaining it as the average of the input 
pulses over a time interval not exceeding 10s. With repetition frequency fR = 100Hz we have 
Nc=10 fR = 1000 pulses in 10s. The synchronism signal available makes possible to synchronize the 
action of the filter (to close the switch) on each pulse. 

B1 Passive Boxcar Integrator filter 

The memory of the filter is discharged only during each pulse, it is in hold state in the interval 
between pulses. The circuit is a BOXCAR INTEGRATOR (BI). The decrease of weight from 
pulse to pulse is given by the ratio 
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independent of the repetition frequency fR. The exponential average must be limited to the pulses 
in 10s, that is, to Nc=10 fR = 1000 pulses.  

For having negligible weight for pulses spaced by more than 10s we must have 
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The value TF1 = 1ms previously considered for the GI is still suitable, but improved results can be 
obtained with a longer TF1. We can take TF1 = 2ms, that is,  C1= 200nF.  
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Employed as GI this circuit with TF1 = 2ms would give the same S/N as in Sec. A with TF1 = 1ms, 
but output amplitude lower by a factor 2. However the circuit is here employed as BI, hence the 
output amplitude is equal to the input pulse amplitude A  
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In fact, with respect to the GI the BI has 

output amplitude higher by the factor  11
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In conclusion, with the BI the minimum measurable input pulse amplitude is improved to 
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and the output amplitude is equal to the input amplitude 

     1gs A  

This result is consistent with the fact that the DC Gain of the BI is unity 

     1BIG   

B2 Active Ratemeter Integrator filter 

The memory of the filter is discharged all the time. The decrease of weight from pulse to pulse is 
given by the ratio 
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which depends on the repetition frequency fR= 1/TR.  The circuit is a RATEMETER 
INTEGRATOR (RI).  

In order to have negligible weight for the previous pulses beyond 10s we must have 
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We select for the RI   TF2=2s  therefore  C2=20μF 

This circuit employed as GI with TF2 = 2s would give the same S/N as the GI in Sec. A with 
TF1 = 1ms, but output amplitude lower by a factor 2000. However, the circuit is here employed as 
RI, so that with respect to the results that it would give employed as GI 

The output signal is  increased by the factor   2
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The output noise is increased by the factor   2 2
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The S/N is increased by the factor    
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The minimum measurable input amplitude is improved to the same level as with the BI 
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The output amplitude of the RI is remarkably higher than that obtained with the GI, but lower than 
that obtained with the BI 
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This result is consistent with the fact that the DC gain of the RI is  
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(C) Measurement of repetitive pulses with variable repetition rate   

C1 Passive Boxcar Integrator filter 

The filter as defined in Sec. B1 is well suitable for measuring the pulse amplitude also in cases 
where the repetition frequency is not controllable and varies in the range from fR = 100 Hz   to  
fR = 200 Hz . In fact: 

1) The output signal amplitude and the S/N  do NOT DEPEND on the repetition frequency fR  

2) The condition of having negligible weight for the previous pulses beyond 10s is still 
fulfilled. If the repetition frequency is increased above 100Hz the weight given to the 
previous pulses decreases more rapidly and becomes lower than 1/100 at time distance 
shorter than 10s 

C2 Active Ratemeter Integrator filter 

In cases where the pulse repetition frequency is variable, the RI is unsuitable for carrying out 
measurements of the pulse amplitude, because the output signal amplitude depends also on the 
repetition frequency fR and not only on the input pulse amplitude A. If the amplitude is constant but 
the frequency varies the output signal will show a variation that the user may misinterpret as due to 
a variation of the amplitude. 

 

(D) Measurement of repetitive pulses with random repetition rate   

Let us consider a measurement of the amplitude of pulses generated in a detector that receives 
ionizing radiations from a source (for instance gamma rays from a Co60 source in a hospital 
laboratory).  

The arrivals of the radiations at the detector time are independent and random; they are ruled by the 
Poisson statistics. The time intervals between the pulses are not constant, but statistical. The number 
of pulses in a time interval is a statistical variable ruled by Poisson statistics (mean square number = 
mean number; etc). The intensity of the radioactive source is characterized by the mean number of 
pulses per second, currently called mean repetition rate (or simply repetition rate). In our case the 
repetition rate is mR= 10 c/s .   
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The pulses have equal amplitude, so they can be measured by measuring an average of the pulse 
amplitudes in sequence. An auxiliary electrical signal is available that signals the arrival of each 
pulse, so it is possible to employ circuits with a gate, such as Boxcar Integrators or Ratemeter 
integrators. 

D1 Passive Boxcar Integrator filter 

The performance of the BI does not depend on the idle interval between the pulses in sequence: in 
this idle interval the circuit is in “hold” state, its memory is frozen, that is, no charge is brought in 
the capacitor and no charge is taken from it. The averaging weighting of the BI is carried out on a 
given number of pulses set by the filter parameters, independently from the time interval where they 
occur. It is irrelevant how long the idle time between two pulses is; it is irrelevant whether it is 
constant or variable. The output signal will result from the exponential average with a ratio r not 
dependent on the repetition interval  
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Therefore, the result obtained with the BI working on a statistical sequence of pulses is equal to the 
result obtained working on a periodical sequence (of course with equal pulses in the two 
sequences).  

We conclude that the BI is perfectly suitable to the purpose also in case of statistical sequence of 
pulse signal 

D2 Active Ratemeter Integrator filter 

The performance of the RI does depend on the idle interval between the pulses in sequence, because 
the weighting of the filter is done over a given time interval set by the filter parameters. The fact 
that the input pulses are statistical introduces further fluctuations. The number of pulses covered by 
the averaging (that is, pulses occurring over the duration of the weighting function) is a statistical 
variable that introduces its fluctuations in the result. Let’s make reference to the RI in Sec. B2, with 
time constant TF2 =2s. We can consider the duration of the weighting to be 5TF2 =10s and we have 
a random pulse rate mR= 100 c/s. Therefore  

mean number of pulses weighted    25 1000w f rN T m   

mean square fluctuation of the number   2 32N wN    
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
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Further fluctuations should be considered (e.g. fluctuations in the weights given to the pulses caused 
by the random position in time of the pulses) but even considering only the number of pulses 
weighted we see that with the RI is not well suitable for measurements on statistical pulse 
sequences, because it is subject to additional fluctuations that are avoided employing a BI  


