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Sensors, Signals and Noise 

COURSE OUTLINE

• Introduction

• Signals and Noise

• Filtering

• Sensors and associated electronics
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SENSOR FILTERING METER

SIGNIFICANT
Noise

of Sensor 

SIGNIFICANT
Noise

of Preamp circuits 
(or Front-end)

NEGLIGIBLE
Noise

of Filtering circuits
(hopefully!)

NEGLIGIBLE
Noise

of Meter circuits
(hopefully!)

PREAMPLIFIER
(or FRONT-END)

Signal

Noise

2

Set-Up for Sensor Measurements

SIGNAL NOISE 



SSN02 - SIGNALSSergio Cova – SENSORS SIGNALS AND NOISE rv 2017/02/06 3

Mathematical Description of Signals 

 Time domain and frequency domain analysis

 Energy signals and correlation functions

 Energy Spectrum

 Power signals, Correlation Functions and Power Spectrum

 Note on truncated signals

and for those who trust only analytical demonstrations

 Appendix: Crosscorrelation and Convolution
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Time domain and frequency domain 
analysis of signals
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Signals: mathematical description
• Signals = electric variables x (voltage, current ...) that carry information
• In the domain of time t :  deterministic functions  x = x(t)

x

t

ݔ ൌ 	1 ݐ ݁ି௧ ்ൗ

In the domain of frequency f (Fourier transform domain) can be considered 
linear superposition (sum) of elementary sinusoid components

Example: exponential pulse

In the domain of time t can be considered 
linear superposition (sum) of elementary δ-pulses of amplitude (i.e. area) x(t)dt
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Signals: mathematical description

ܺ ݂ ൌ ݔሾܨ ݐ ሿ ׬	 = ሻ݁ି௜ଶగ௙௧ାஶݐሺݔ
ିஶ ݐ݀

RECALL:  since x(t)  is real,  the transform X(f) has simple and useful properties,

for instance:  

X(‐f) = X*(f) , that is    |X(‐f)| = |X(f)|  and arg[X(‐f)] = ‐ arg [X(f)] 

...... and various other properties!

ݔ ݐ ൌ 	 න ܺሺ݂ሻ݁௜ଶగ௙௧
ାஶ

ିஶ

݂݀

• X(f) = Fourier transform of x(t)

• X(f) is complex : Module and Phase 

(or Real and Imaginary parts)

linear superposition (sum) of elementary sinusoid components
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Convolution
Constant-parameter linear filters (NO switches, NO time-variant components!!) 

are characterized by 

H(f) transfer function in frequency domain

h(t) δ-response in time domain 

h(α)
x(α) y(t)

H(f) = F[h(t)]    

h(t) = F‐1H(f)]

Signal in Signal out

ݕ ݐ ൌ ݔ ߙ ∗ ݄ ߙ ൌ න ݔ ߙ ݄ ݐ െ ߙ ߙ݀
ାஶ

ିஶ

The input x(α) can be described as a linear superposition (sum) of elementary 
δ-pulses of amplitude  x(α)dα

therefore 

the output y(t) can be described as a linear superposition (sum) of elementary 
δ-pulse responses x(α)dα h(t‐α)
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Computing the convolution

α

α

α

α

t

x(α)

h(α)

h(T‐α)

x(α)h(T‐α)

y(t)

T

reversed δ-response 
delayed by T

y(T)

ݕ ݐ ൌ න ݔ ߙ ݄ ݐ െ ߙ ߙ݀
ାஶ

ିஶ

input signal

δ-response

output signal

T

h(α)
x(α) y(t)

area = y(T)
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Energy signals and correlation functions
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Signal Energy

The Energy E of a signal x(t) is defined as

ܧ ൌ 	 lim
்→ஶ

නݔଶ ߙ ߙ݀ ൌ න ଶݔ ߙ ߙ݀
ஶ

ିஶ

்

ି்

Signals x(t) with finite E are called energy-signals. Typical example:  pulse signals

INTUITIVE VIEW OF ENERGY:

Let x(t) be a voltage pulse on a unitary resistance R=1 Ω

then E is the energy dissipated in R by the pulse  
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Signal Auto-Correlation Function  (Energy-type)

݇௫௫ሺ߬ሻ ൌ 	 lim்→ஶ
නݔ ߙ ߙሺݔ ൅ ߬ሻ݀ߙ ൌ න ݔ ߙ ߙሺݔ ൅ ߬ሻ݀ߙ

ஶ

ିஶ

்

ି்

kxx(τ) gives the degree of similarity of x(t) with itself shifted by τ

Energy = Autocorrelation at zero-shift

݇௫௫ 0 ൌ ܧ
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Signal Auto-Correlation Function  (Energy-type)
݇௫௫ሺ߬ሻ ൌ න ݔ ߙ ߙሺݔ ൅ ߬ሻ݀ߙ

ஶ

ିஶ

α

τ

α

݇௫௫ሺܶሻ

݇௫௫

T

T

x(α)

x(α+T)

Case: single pulse (exponential)

 1 Pt Tx t Ae

  2

2
PTP

xx
Tk A e  
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Signal Auto-Correlation Function  (Energy-type)

݇௫௫ሺ߬ሻ ൌ න ݔ ߙ ߙሺݔ ൅ ߬ሻ݀ߙ
ஶ

ିஶ

α

τ

α

݇௫௫ሺܶሻ
݇௫௫

T

T

x(α)

x(α+T)

TR

TR TR

Case: double pulse (exponential)

     1 1 R PP t T Tt T
Rx t Ae t T Ae   

  2

2 2

2 2

P

R P R P

T
xx P

T T T TP P

k A T e
T TA e A e



 

 

   

 

 
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Signal Cross-Correlation Function  (Energy-type)

݇௫௬ሺ߬ሻ ൌ 	 lim்→ஶ
නݔ ߙ ߙሺݕ ൅ ߬ሻ݀ߙ ൌ න ݔ ߙ ߙሺݕ ൅ ߬ሻ݀ߙ

ஶ

ିஶ

்

ି்

• x(t) and y(t) are two different  signals of energy-type 

• kxy(τ) gives the degree of similarity of x(t)

with y(t) shifted by τ to left (towards earlier time)

• Various denominations for kxy(τ) :

Cross-Correlation function of x and y

Mutual-Correlation function of x and y
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Signal Cross-Correlation Function  (Energy-type)

x(α)

y(α)

y(α+T)

x(α)

x(α) y(α+T)

kxy

T

α

α

α

α

α

τ
T

݇௫௬ሺܶሻ

݇௫௬ሺ߬ሻ ൌ ׬ ݔ ߙ ߙሺݕ ൅ ߬ሻ݀ߙஶ
ିஶ

݇௫௬ሺ0ሻ

Building step-by-step 

the Cross-Correlation function
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Cross-Correlation obtained by Convolution

α

α

α

α

α

τ

x(α)

y(α)

ሺܶݕ െ ሻߙ

x(‐α)

xሺെαሻݕሺܶ െ ሻߙ

u

ݑ ܶ ൌ ݇௫௬ሺܶሻݑ 0 ൌ ݇௫௬ሺ0ሻ

Convolution 

ݔ ∗ ݕ ൌ ሺܶሻݖ

is different from Crosscorrelation  ݇௫௬ሺܶሻ

ݑ ܶ ൌ ݇௫௬ሺܶሻ

However

Convolution with first term reversed 

ݔ െܽ ∗ ݕ ܽ ൌ ሺܶሻݑ

is equal to Crosscorrelation

T
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Cross-Correlation obtained by Convolution
ݑ ܶ ൌ ݔ െܽ ∗ ݕ ܽ݇௫௬ሺܶሻ

x(α)

y(α)

ሺܶݕ െ ሻy(α+T)ߙ

x(α) x(‐α)

xሺെαሻݕሺܶ െ ሻx(α) y(α+T)ߙ

݇௫௬ሺܶሻ ݑ ܶ
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Energy Spectrum
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INTUITIVE VIEW OF ENERGY SPECTRUM:

Let x(t) be voltage on a unitary resistance R=1 Ω

power = voltage x(t) multiplied by current x(t)

x(t) = sum of sinusoid  components with frequency f and amplitude  |ܺ ݂ |݂݀

sinusoids are orthogonal functions 

No power from multiplication of voltage and current of different components (different f)

Every component (at frequency f) contributes an energy

Energy signal  x(α)  with  Fourier transform X(f):  by Parseval’s theorem

Sx(f) =  ܺ ݂ 2 is called the Energy Spectrum of the signal x(α)

19

Energy Spectrum

ܧ ൌ ׬	 ଶݔ ߙ ஶߙ݀
ିஶ ׬ = ܺ ݂ ଶ݂݀ஶ

ିஶ ൌ ׬2 ܺ ݂ ଶ݂݀ஶ
଴

ܧ݀ ൌ 	 ܺሺ݂ሻ ଶ݂݀ ൅ ܺሺെ݂ሻ ଶ= 2 ܺሺ݂ሻ ଶ݂݀
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Energy Spectrum
• Alternative definition of the Energy Spectrum is

• Knowing that ݇௫௫ ൌ ݔ െߙ ∗ ሻߙሺݔ we see that the two definitions are consistent

and by a basic property of Fourier transforms 

ܵ௫ ൌ ሾ݇௫௫ሿܨ

ܵ௫ ൌ ܨ ݇௫௫ ൌ ܨ ݔ െߙ ∗ ݔ ߙ ൌ ܺ െ݂ ܺ ݂ ൌ ܺ∗ ݂ ܺ ݂ ൌ ܺሺ݂ሻ ଶ

න ܵ௫ ݂ ݂݀ ൌ
ஶ

ିஶ

න ܺ ݂ ଶ݂݀ ൌ 	݇௫௫ 0 ൌ ܧ
ஶ

ିஶ



SSN02 - SIGNALSSergio Cova – SENSORS SIGNALS AND NOISE rv 2017/02/06

kxx(τ)

τ

2

2
P

P
TV

21

Example of
Energy, Autocorrelation and Energy Spectrum

   
 

2 2
2

2
1 2

P P
x

p

V TS f X f
fT

 


    1exp
1 2P P P

P P

tV x t X f V T
T j fT

 
     



 
2

exp
2

P P
xx

P

V Tk
T


 
  

 
Autocorrelation 

function

Energy Spectrum

Energy   20
2
P

xx P
TE k V 

Energy   2

2
P

x P
TE S f df V




 

Sx(f)

f

௉ܸ
ଶ

௉ܶ
ଶ

VP
Exponential pulse
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݇௫௫(߬ሻ ൌ ݇௫௫( െ ߬ሻ

࢑࢞࢞(0ሻ ൐ ૙࢑࢞࢞(0ሻ ൐ ࢑࢞࢞(࣎ሻ

• kxx is symmetrical:

• kxx  has positive maximum at zero shift:

Signal Cross-Correlation Function  (Energy-type)
• x(t) and y(t) are two different energy-type signals

• kxy is NOT symmetrical, however ࢑࢞࢟(࣎ሻ ൌ ࢑࢟࢞(െ ࣎ሻ

with

• the maximum of kxy  is neither necessarily positive nor at zero shift,
however, the absolute maximum value is limited

݇௫௬(߬ሻ ൑ ଵ
ଶ
	[݇௫௫ሺ0ሻ + ݇௬௬ሺ0ሻ] (linear mean of the maxima of kxx and kyy)

݇௫௬(߬ሻ ൑ ݇௫௫ 0 	݇௬௬ሺ0ሻ (geometric mean of the maxima of kxx and kyy)

Signal Auto-Correlation Function  (Energy-type)
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Auto-Correlation of sum-signals

݇௭௭ሺ߬ሻ ൌ න ݔ ߙ ൅ ݕ ߙ ݔ ߙ ൅ ߬ ൅ ݕ	 ߙ ൅ ߬ ߙ݀
ஶ

ିஶ

݇௭௭ሺ߬ሻ ൌ ݇௫௫ሺ߬ሻ +	݇௫௬ሺ߬ሻ + ݇௬௫ሺ߬ሻ +	݇௬௬ሺ߬ሻ

is the sum of their auto- and cross-correlations

The autocorrelation of the sum of two signals  x(t) and y(t) 

The energy spectrum ܵ௭ ݂ ൌ ሺ݂ሻܼ =[௭௭ሺ߬ሻ݇]ܨ ଶ

is the sum of the two SPECTRA (real) and of the two CROSS-SPECTRA (complex conjugate)

ܵ௭ ݂ ൌ ܺሺ݂ሻ ଶ ൅ ܺ∗ ݂ ܻ ݂ ൅ ܺ ݂ ܻ∗ ݂ ൅	 ܻሺ݂ሻ ଶ

ܵ௭ ݂ ൌ ܵ௫ ݂ + ܵ௫௬ ݂ + ܵ௬௫ ݂ + ܵ௬ ݂

Complex conjugate
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Power signals, Correlation Functions
and Power Spectrum
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Signal Power
For signals x(t) that have NOT finite energy E∞ (DC, sinusoids, periodic signals, etc. ) 
the Power P is defined as the time-average

ܲ ൌ 	 lim
்→ஶ

න
ሻߙଶሺݔ
2ܶ ߙ݀

்

ି்
Parseval theorem is valid for the entire integral	 ାஶିஶ׬
but NOT for the truncated integral ା்ି்׬

For computing  P in f domain instead of truncated integral  we use  truncated signal xT(t)
்ݔ ߙ ൌ ሻߙሺݔ for   |α| ≤T
்ݔ ߙ ൌ 0 for |α| > T

We can thus exploit Parseval theorem:  with   ்ܺ ݂ ൌ ்ݔሾܨ ߙ ]   we get

ܲ ൌ 	 lim
்→ஶ

׬ ௫೅	
ଶሺఈሻ
ଶ்

ஶ	ߙ݀
ିஶ = lim

்→ஶ
׬ 	 ௑೅ሺ௙ሻ మ

ଶ்
݂݀ஶ

ିஶ ׬= lim
்→ஶ

	 ௑೅ሺ௙ሻ మ

ଶ்
݂݀ஶ

ିஶ

The  Power Spectrum of the signal x(α) is defined as the integrand

Sx(f) =  lim்→ஶ
	 ௑೅ሺ௙ሻ మ

ଶ்
and       ܲ ൌ ׬	 ܵ௫ ݂ ݂݀ஶ

ିஶ
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Signal Auto-Correlation Function  (Power-type)

௫௫ሺ߬ሻܭ ൌ 	 lim்→ஶ
න
ݔ ߙ ߙሺݔ ൅ ߬ሻ

2ܶ ߙ݀
்

ି்

Just like power P, the autocorrelation of power signals is defined as time‐average

ܲ ൌ ௫௫ሺ0ሻnote thatܭ

NB2:  xT(α) energy signal with autocorrelation   ݇௫௫,்ሺ߬ሻ ൌ ׬ ்ݔ ߙ ்ݔ ߙ ൅ ߬ ஶߙ݀
ିஶ 	

Therefore:		

௫௫ሺ߬ሻሻܭ ൌ 	 lim்→ஶ
න
ݔ ߙ ߙሺݔ ൅ ߬ሻ

2ܶ ߙ݀
்

ି்

ൌ 	 lim
்→ஶ

න
்ݔ ߙ ߙሺ்ݔ ൅ ߬ሻ

2ܶ ߙ݀
ஶ

ିஶ

NB1: for finite T  it is  
but for  lim

்→ஶ
the  = is valid

׬ ݔ ߙ ݔ ߙ ൅ ߬ ߙ݀ ് ׬ ்ݔ ߙ ߙሺ்ݔ ൅ ߬ሻ݀ߙஶ
ିஶ

்
ି்

Also here we use truncated signal  xT(α) instead of truncated integral ࢀିࢀ׬

௫௫ሺ߬ሻሻܭ ൌ lim
்→ஶ

݇௫௫,்ሺ߬ሻ
2ܶ
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Signal Auto-Correlation Function and Power Spectrum

௫௫ሺ߬ሻሻܭ ൌ lim
்→ஶ

݇௫௫,்ሺ߬ሻ
2ܶ

An alternative definition of signal Power Spectrum is

ܵ௫ ൌ ௫௫ሻሿܭሾܨ
The two definitions are consistent 

ܵ௫ ݂ ൌ ܨ ௫௫ܭ ߬ ൌ ሾܨ lim
்→ஶ

௞ೣೣ,೅ሺఛሻ
ଶ்

] = lim
்→ஶ

ிሾ௞ೣೣ,೅ሺఛሻሿ
ଶ்

= lim
்→ஶ

௑೅ሺ௙ሻ మ

ଶ்

and  
ܲ ൌ ௫௫ܭ	 0 ൌ ׬	 ܵ௫ ݂ ݂݀ஶ

ିஶ
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Signal Cross-Correlation Function  (Power-type)

௫௬ܭ ߬ ൌ lim
்→ஶ

න
ݔ ߙ ݕ ߙ ൅ ߬

2ܶ ߙ݀
்

ି்

ൌ lim
்→ஶ

න
்ݔ ߙ ߙሺ்ݕ ൅ ߬ሻ

2ܶ ߙ݀
ஶ

ିஶ

	

• x(t) and y(t)  are two different signals, both power-type

• Kxy(τ) measures the degree of similarity of x(t) with y(t) shifted by 
τ to left (towards earlier time)

• If even only one of the two signals x(t) and y(t) is energy-type 
the energy type autocorrelation kxy(τ) must be employed 

(in fact, the power-type crosscorrelation vanishes Kxy(τ) = 0 
and the energy-type crosscorrelation kxy(τ) is finite). 
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௫௫(߬ሻܭ ൌ )௫௫ܭ െ ߬ሻ

௫௫(0ሻܭ ൐ ௫௫(0ሻܭ0 ൐ ௫௫(߬ሻܭ

• Kxx is symmetrical:

• Kxx   has positive maximum at zero shift:

Signal Cross-Correlation Function  (Power-type)
• x(t) and y(t) are two different signals, both power-type 

• Kxy is NOT symmetrical, however ௫௬(߬ሻܭ ൌ )௬௫ܭ െ ߬ሻ

with

• the maximum of Kxy  is neither necessarily positive, nor at zero shift, 
however, the absolute maximum value is limited

௫௬(߬ሻܭ ൑ ଵ
ଶ
௫௫ሺ0ሻܭ]	 ௬௬ሺ0ሻ] (linear mean of the maxima of kxxܭ + and kyy)

௫௬(߬ሻܭ ൑ ௫௫ܭ 0 ௬௬ሺ0ሻܭ	 (geometric mean of the maxima of kxx and kyy)

Signal Auto-Correlation Function  (Power-type)
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Energy-signals and power-signals compared

Energy-type (pulses etc.)

Energy 							ܧ ൌ ׬	 ଶݔ ߙ ஶߙ݀
ିஶ

Autocorrelation 

݇௫௫ሺ߬ሻ ൌ ׬ ݔ ߙ ߙሺݔ ൅ ߬ሻ݀ߙஶ
ିஶ

Energy spectrum

										ܵ௫,௘ൌ ሾ݇௫௫ሺ߬ሻሿܨ =  ܺ ݂ 2

and

׬ ܵ௫,௘ ݂ ݂݀ ൌ ஶܧ
ିஶ

Power-type (periodic waveforms etc.)

Power   ܲ ൌ 	 lim
்→ஶ

׬ ௫మሺఈሻ
ଶ்

்ߙ݀
ି்

Autocorrelation 

௫௫ሺ߬ሻሻܭ ൌ 	 lim்→ஶ
׬ ௫ ఈ ௫ ఈାఛ

ଶ்
்ߙ݀

ି்

Power spectrum

								ܵ௫,௣ൌ ௫௫ሺ߬ሻሿܭሾܨ = lim
்→ஶ

	 ௑೅ሺ௙ሻ మ

ଶ்

and

න ܵ௫,௣ ݂ ݂݀ ൌ ܲ
ஶ

ିஶ
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Note on truncated signals
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Note on truncated signals

t

x(t)

்ݔ ݐ ൌ ሻݐሺݔ ∙ ݎ் ሺݐሻ

Noteworthy case: truncated sinusoidal signal

்ܺ ݂ ൌ ܺ ݂ ∗ ்ܴሺ݂ሻ
F

F‐1

seen in time domain seen in frequency domain

Ideal
sinusoid

t

xT(t)

‐T T

Truncated
sinusoid

fm‐fm f

|X|

2
A

2
A

|RT|

f

1
2T

2T

ffm‐fm

|XT|
1

2T


1
2T



A

tT‐T

rT(t) Time
Window1



SSN02 - SIGNALSSergio Cova – SENSORS SIGNALS AND NOISE rv 2017/02/06 33

Note on truncated signals

• In reality the signal is always available over a finite time interval: 
therefore, in reality we always deal with truncated signals

• cropping in time corresponds to convolution of  the signal in the f domain 
with the transform of the rectangle (sinc function)

• the convolution spreads the signal in the f domain; 
that is, it  makes it wider and smoother 

• the narrower is the window 2T, the wider is the sinc
and more significant is the signal spreading in frequency 

• Applying correctly the sampling theorem we see that: 
the sampling frequency fS to be employed for a truncated sinusoid of frequency fm
is  NOT   fS ≈ 2fm ; it must be REMARKABLY HIGHER fS >>  2fm

• NB1:  in general the convolution of complex functions is difficult to visualize because 
a) it is twofold; it implies shifting in positive and in negative sense of the f axis;  
b) at every frequency f  a sum of complex terms must be computed

• NB2: however, the case here considered is much simpler: at every frequency f
only one contribution is significant, there is no sum to be computed. 
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APPENDIX: Crosscorrelation and Convolution
(for those who trust only analytical demonstrations)

ߚ ൌ െߙ		
dߚ ൌ െ݀ߙ

݇௫௬ሺ߬ሻ ൌ ׬ ݔ ߚ ݕ ߚ ൅ ߬ ஶߚ݀
ିஶ

݇௫௬ሺ߬ሻ ൌ ׬ ݔ ߚ ݕ ߚ ൅ ߬ ஶߚ݀
ିஶ ൌ െ׬ ݔ െߙ ݕ െߙ ൅ ߬ ߙ݀ ൌିஶ

ାஶ

ൌ න ݔ െߙ ݕ ߬ െ ߙ ߙ݀
ஶ
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change of variable : 

shows that

that is
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