Sensors, Signals and Noise
COURSE OUTLINE

Noise: 1) Description
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Noise Description

Noise Waveforms and Samples

Statistics of Noise Samples and Probability Distribution (PD)
Complete Description of Noise with Probability Distributions
Basic Description of Noise with the 2°order Moments of PD

Autocorrelation Function of Noise

vV V V VYV V V

Power Spectrum of Noise
and for those who trust only analytical demonstrations
» APPENDIX: Exchanging the order of Time-Averaging and Ensemble-Averaging

in the definition of Power Spectrum
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Set-Up of Sensor Measurements

_ I
Signali PREAMPLIFIER | i
|

—L 3 SENSOR —>(OI’FRONT-END)_> FILTERING +—> METER

Noise Noise ' .
Noise Noise
of Sensor of Preamp or L -
SIGNIFICANT Front-end circuit of Filtering circuits  of Meter circuits
"SIGNIFICANT NEGLIGIBLE NEGLIGIBLE
(hopefully!) (hopefully!)
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Noise Waveforms and Samples
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Noise waveforms (oscilloscope @ 50us/div)

White Noise

spectrum S = constant

Random-Walk Noise

1
spectrum § = 7z

Flicker Noise

spectrum § = %
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Noise Waveform Ensemble

Set of identical noise sources (many identical amplifiers or resistors or other)

A x(t)
waveforms of noise
Source @ . A S A o a0 A LA
- —— '. W r ‘ r \ i - w
t
Source (2) ol A A
e Tate @ W TS r
t
Source
@ 1 ¥a A a l_ b s i

x(t,) amplitude sample at time t, on each waveform
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Statistics of Noise Samples
and
Probability Distribution (PD)
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Classifying the Amplitude of Noise Samples

M x(t)

The amplitude x(t,) of the noise waveform at time t,
is compared to a scale of discrete values x, spaced by constant interval Ax
and is classified at the nearest value x, of the scale

A high number N of noise waveform is sampled and measured

of which ANy is the number of sample waveforms classified at x,

ANy, . - :
Af, = Tk is called statistical frequency of the amplitude x,

Sergio Cova — SENSORS SIGNALS AND NOISE SSNO3a NOISE 1 rv2017/02/08




Noise Sample Statistics and Probability

A x(t)

N values x(t;) measured (in units Ax) in N waveforms A AN
AN, in the central Ax (around x=0) il Histogram
AN, in the first Ax (centered in x,= Ax) of measured
........... X values
AN, in the k-th Ax (centered in x,= kAx) |

A X
statistical frequency of x, is Afy = % R
e ifAx —» dx then AN, — dN, = n(xy)dx p(x)

ANy i) Probability Density
e hence Af, — df = Nk= N" dx of x values
e if N> oo then df = n(;k) dx = p(x)dx cd .
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Stationary and Non-stationary Noise

STATIONARY noise :
the probability density is constant in time p = p(x)

i A e e

NON-STATIONARY noise :
the probability density varies in time p=p(x, t)

i

BEWARE!!

the probability density p alone does not give a complete description of the noise,
in fact different cases can have equal probability density p
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Noise Waveforms and Sample Statistics

Ax(t) Case A : outputs of a set of noisy amplifiers,
stationary noise x with prob. density p,(x)

Source @ ] ey k.Y 9 VAl ATYAL A A A AAN

Source

Op4IN.

Values x(t,) and x(t,) measured on a sample waveform at different t, and t,
are random values with equal probability density p,(x) and they are

* in practice identical for ultra-short interval t

 somewhat different for short interval t
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Noise Waveforms and Sample Statistics

A x(t) Case B : output of a set of low-noise amplifier,
with random baseline offset x with prob. density p,(x)

) X > ¢
Source (2) // / >+
/ T
Source

o va / > ¢
tl tZ
Values x(t,) and x(t,) measured on a sample waveform at different t; and ¢, :

e they are random values with probability density p,(x);
e they are equal for any interval T, short or long

Source @
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Complete Description of Noise
with Probability Distributions
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Full Description of Noise
A
x(t)

oullh & L . A Py B

e Fora proper description of the noise the marginal probability p,.(x, t)dx of having
a value x at time t is NOT sufficient

* The joint probability pjx;, x,,t,, t, )dx; dx, of having a value x; at time t, and
a value x, at time t, must also be considered

rv 2017/02/08
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Noise Description with Probability Distributions

x(t)

Source@ : S L i

.‘_ N A . A Py B

A full description of the noise is obtained by knowing:

e The marginal probability density p,.(x)=p,(x; t;) foreveryinstant t,.
For stationary noise p,, does NOT depend on time t, : p,. = p,.(x)

* The joint probability density p; (x;, X, ) = pi(x;, X, ty, t;) = pixs, X5, ty, t; +7T)

for every couple of instants t; and t,=t, + T.

For stationary noise p; depends only on the time interval t, NOT on the time position t;
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Note: Time-Average and Ensemble-Average

X(t) A <

< x > Average of x over the time T x(t)
> | <x>=lim| —=dt
T—00 _r 2T
R | .‘ | ol 4 AN A Y.Y "
- AV E ¥ t
[ A'N-.
P t
1l A t
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Basic Description of Noise
with 2"Y order Moments
of Probability Distribution
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NOTE: Moments of Probability Distributions

NB: for clarity, we call here the two statistical variables x and y instead of x, and x,

Moments of a marginal p(x) m,= x™ = ffooo x" p(x)dx

Moments of a joint p(x,y) my = xJyk = ffooo xJ y*p(x, y)dxdy

* them, (and m; ) give information on the features of the distributions
e asthe order (n or j+k) increases, the information is increasingly of detail

Let’s consider a description of noise limited to the 2° order moments, i.e.
Mean square value (or variance)

my = 37 = [, X p()dx = 2
Mean product value (or covariance of x and y)

my, = %y = [ xyp(x,y)dxdy = 0>

NB: it is obviously

m,=m_,=1 the total probability is normalized to 1
mqy=mq,=X =0 =% =my; the mean value of noise is zero
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Noise Description with 2°order Moments

x(t)

] e k.Y A AT NAI A A AA
Source (1) BT mman = "

Source (2) ZA_ A A3 el At N ANy

« forevery instant t, the mean square value (or variance) x2(t;) = a,%(t;)
For stationary noise x? does NOT depend on time t,

e forevery couple t, and t,=t, + t the meanproduct x (£1)x (tz) = x (t1)x (t1 + T)
For stationary noise it depends only on the time interval t, NOT on the time position t,
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Autocorrelation Function of Noise
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Noise Description with the Autocorrelation Function

X (t1)x (tz) = x (t)x (g +7)= Ryx(ty,t1 +7)= R, (tq,t3)

* is called Autocorrelation Function of the noise
e is always a function of the interval t between the two instants t,and t,

e isalso a function of t; only for non-stationary noise

NOTE THAT:

for a noise x the autocorrelation R, ,(7) is an ensemble-average,

for a signal x the autocorrelation function K, (t ) is a time-average

The noise mean square value is called NOISE POWER
it is the autocorrelation witht=0
x2(t) = Ryx (£, 0)
for stationary noise it is constant at any t
x% = Ry (0)
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Power Spectrum of Noise
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Noise Description with the Power Specrum

Noise has power-type waveforms (divergent energy — o)
which have statistical variations from waveform to waveform of the ensemble.
By averaging over the ensemble of the autocorrelations of the noise waveforms,

the concepts of power and power spectrum introduced for the signals

can be extended to the noise

X (@) = 5@ |XT<f)|
P_’Il’—>oofT 2T da _’Il"l—l;rc}of da_'ll"—mofoo df_
T<f>| 10
_f—oo T —>o0 df f—oo T —oo 2T df

Therefore, the Power Spectrum of the noise is defined as

f
S (f)— 111‘{)10 | TZ(T)|
and the noise power is
p= [ snar
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Noise Description with the Power Spectrum

By averaging over the ensemble we can extend to the noise

also the second definition of Power Spectrum introduced for the signals

Sx(f) =F[Kx(D]=F[ Kxx(7) 1=

ffooo xr(a)xr(a+t)da

= Fljim =
= F[lim kx,;,;(r)] = lim F[kx;,;(ﬂ]

The Power Spectrum of the noise can be directly defined as

X ()
Sx(f):"mM
Tow 2T
The noise power is
P = jsx(f)dfszx(O)
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Bilateral and Unilateral Spectral Power Density

* The mathematical spectral density S, (f) defined over-oco<f< oo,
is a bilateral spectral density S,; (f)

attention is called on this fact by the second subscript B

The noise power computed with the bilateral density S, ; is

P=[" Su(fdf
/I

Since S,; (f) is symmetrical S,;(-f) = S,5(*f), itis

P =2 ["Sp(Ndf = [ 2S5(df
A unilateral «physical» spectral density S, (f) = 2S,g(f) is usually employed in
engineering tasks for making computations only in the positive frequency range

The noise power computed with with the unilateral density S, is

P= [ Sw(df
/
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Power Spectrum of Non-Stationary Noise
Sx(f) =F[ Kyx(7) ]

K, (1) results from the double average,

first over the time K, (t) =< x(t)x(t + ) > then over the ensemble

It can be shown that the order of averaging can be exchanged (see later)

K., (1) = <x(®)x(t+1)>=<x()x(t+717)>=<R(t,t+71)>

The power spectrum thus is related to the ensemble autocorrelation function

Sx(f)= F[< Ry (t,t +7) >]

e For non-stationary noise S,(f) can be defined with reference to
the time-average of the ensemble autocorrelation function of the noise.

* For stationary noise there is no need of time-averaging: it is simply
< Ry (t,t +T) >=R,, (1)
and
Sx(f) = F[Ryx(7)]
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APPENDIX :
the order of Time-Averaging and Ensemble-Averaging
can be exchanged in the definition of the Noise Power Spectrum

Let'sverifythat K, ,(T) = < Ry (t,t+ 1) >

In fact:

: T +
Ky x (1) :71,1_{210 f—T x(a);c;a 2 da =

RT T x(a)x(a+T)
_Tll_>rrc>lo f—T 2T da

T
_ R, (a,a + 1) g
et 2T

~T
=< R, (t,t+1)>
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