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Sensors, Signals and Noise 

COURSE OUTLINE

• Introduction

• Signals and Noise: 1) Description

• Filtering

• Sensors and associated electronics
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Noise Description

 Noise Waveforms and Samples 

 Statistics of Noise Samples and Probability Distribution (PD) 

 Complete Description of Noise with Probability Distributions

 Basic Description of Noise with the 2°order Moments of PD

 Autocorrelation Function of Noise

 Power Spectrum of Noise

and for those who trust only analytical demonstrations

 APPENDIX: Exchanging the order of Time-Averaging and  Ensemble-Averaging 

in the definition of Power Spectrum
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SENSOR FILTERING METER

Noise
of Sensor 

SIGNIFICANT

Noise
of Preamp or 

Front-end circuits
SIGNIFICANT

Noise
of Filtering circuits

NEGLIGIBLE
(hopefully!)

Noise
of Meter circuits

NEGLIGIBLE
(hopefully!)

PREAMPLIFIER
(or FRONT-END)

Signal

Noise

3

SIGNAL NOISE 

Set-Up of Sensor Measurements
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Noise Waveforms and Samples
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Noise waveforms  (oscilloscope @ 50μs/div)

White Noise 

spectrum S = constant

Random-Walk Noise 
spectrum ࡿ ൌ 

ࢌ

Flicker Noise 
spectrum ࡿ ൌ 

ࢌ
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Noise Waveform Ensemble

①

②

③

x(t)

t1

t

t

t

Set of identical noise sources (many identical amplifiers or resistors or other)

waveforms of noise 

x(t1) amplitude sample at time t1 on each waveform 

Source

Source

Source
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Statistics of Noise Samples 
and 

Probability Distribution (PD)
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Classifying the Amplitude of Noise Samples

x(t)

t1 t

ݔ∆

The amplitude x(t1) of the noise waveform at time t1
is compared to a scale of discrete values xk spaced by constant interval ∆ݔ

and is classified at the nearest value xk of the scale
A high number N of noise waveform is sampled and measured 

of which ∆ ܰ	is the number of sample waveforms classified at xk
∆ ݂ ൌ

∆ேೖ
ே
	 is called statistical frequency of the amplitude xk
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Noise Sample Statistics and Probability
x(t)

t1 t

ݔ∆

N values x(t1) measured (in units  Δx) in N waveforms
ΔN0 in the central Δx  (around x=0)
ΔN1 in the first Δx (centered in x1= Δx) 
...........
ΔNk in the k-th Δx (centered in xk= kΔx)

statistical frequency of  xk is 			∆ ݂ ൌ
∆ேೖ
ே

• if ∆ݔ → ݔ݀ then   ∆ ܰ → ݀ ܰ ൌ ݊ ݔ ݔ݀

• hence   ∆ ݂ → ݀ ݂ ൌ
ௗேೖ
ே

=  ௫ೖ
ே

ݔ݀

• if  ܰ → ∞ then     ݀ ݂ ൌ
 ௫ೖ
ே

ݔ݀ ൌ  ݔ ݔ݀

Histogram
of measured

x values

x

ΔN

x
p

p(x)
Probability Density 

of x values
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Stationary and Non-stationary Noise

t

t

STATIONARY noise : 
the probability density is constant in time  p = p(x) 

NON-STATIONARY noise : 
the probability density varies in time  p= p(x, t)

BEWARE!!
the probability density p alone does not give a complete description of the noise,

in fact different  cases can have equal probability density p
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Noise Waveforms and Sample Statistics

①

②

③

x(t)

t1 t2

t

t

t

Case A : outputs of a set of noisy amplifiers,
stationary noise x  with  prob. density pA(x)

τ

Values x(t1) and x(t2) measured on a sample waveform at different t1 and t2
are random values with equal probability density pA(x) and they are
• in practice identical  for ultra-short interval   τ
• somewhat  different  for short interval τ
• different and independent for longer interval  τ

Source

Source

Source
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Noise Waveforms and Sample Statistics

①

②

③

x(t)

t1 t2

t

t

t

Case B : output of a set of low‐noise amplifier,
with random baseline offset x  with  prob. density pB(x)

Values x(t1) and x(t2) measured on a sample waveform at different t1 and t2 : 
• they are random values with probability density pB(x);
• they are equal for any interval  τ , short or long
Case B is different from A, but it can have equal probability density  pB(x) = pA(x)

Source

Source

Source
τ
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Complete Description of Noise 
with Probability Distributions
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Full Description of Noise

①

②

③

x(t)

t1 t2

t

t

t

τ

• For a proper description of the noise the marginal probability   pm(x, t)dx of having 
a value x at time t is NOT sufficient

• The joint probability  pj(x1 , x2 ,t1, t2 )dx1 dx2 of having a value x1  at time t1 and
a value x2 at time t2 must also be considered

Source

Source

Source
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Noise Description with Probability Distributions

①

②

③

x(t)

t1 t2

t

t

t

τ

A full description of the noise is obtained by knowing:
• The marginal probability density   pm(x) = pm(x; t1)   for every instant t1 .

For stationary noise pm does NOT depend on time t1 :  pm = pm(x) 
• The joint probability density  pj (x1 , x2 ) = pj(x1 , x2 ; t1, t2 ) = pj(x1 , x2 ; t1, t1 + τ) 

for every couple of instants t1 and t2 = t1 + τ . 
For stationary noise pj  depends only on the time interval τ, NOT on the time position t1

Source

Source

Source
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Note: Time-Average and Ensemble-Average

x(t)

t

t

t

ഥ࢞ Average of x over the ensemble

൏ ࢞  Average of x over the time
൏ ࢞ 	ൌ lim

்→ஶ
න

ሻݐሺݔ
2ܶ ݐ݀

்

ି்

ഥ࢞ ൌ 	 න 	ݔ ݔ ݔ݀
ஶ

ିஶ
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Basic Description of Noise 
with 2nd order Moments 

of Probability Distribution
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NOTE: Moments of Probability Distributions

Let’s consider a description of noise limited to the 2° order moments, i.e.
Mean square value (or variance)       

݉ଶ ൌ 	ଶݔ	  = ଶஶݔ
ିஶ  ݔ ݔ݀ ൌ ௫ଶߪ

Mean product value (or covariance of x and y)
݉ଵଵ ൌ  = ݕݔ	 ஶݕݔ

ିஶ  ,ݔ ݕ ݕ݀ݔ݀ ൌ ௫௬ଶߪ

• the mn (and mjk ) give information on the features of the distributions
• as the order (n or  j+k) increases, the information  is increasingly of detail 

Moments of a marginal p(x) 		݉ൌ 	ݔ	  = ஶݔ
ିஶ  ݔ ݔ݀

Moments of a joint p(x,y) 	 ݉ ൌ 	 	ݕ	ݔ  = ஶݔ
ିஶ ,ݔሺݕ ݕ݀ݔሻ݀ݕ

NB: it is obviously  
mo = moo = 1     the total probability is normalized to 1
݉ଵ=݉ଵ= ̅ݔ ൌ 0 ൌ തݕ ൌ ݉ଵ the mean value of noise is zero 

NB: for clarity,  we call here the two statistical variables x and y instead of x1 and x 2
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Noise Description with 2°order Moments

①

②

③

x(t)

t1 t2

t

t

t

τ

• for every instant t1 the mean square value (or variance)   ࢞	ሺ࢚ሻ ൌ ሻ࢚ሺ࢞࣌
For stationary noise ࢞	 does NOT depend on time t1

• for every couple t1 and t2 = t1 + τ the meanproduct ሻ࢚ሺ	࢞ሻ࢚ሺ	࢞ ൌ ࢚ሺ	࢞ሻ࢚ሺ	࢞  ሻ࣎
For stationary noise it depends only on the time interval τ, NOT on the time position t1

Source

Source

Source
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Autocorrelation Function of Noise
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Noise Description with the Autocorrelation Function

ሻ࢚ሺ	࢞ሻ࢚ሺ	࢞ ൌ 	࢞ ࢚ 	࢞ ࢚  ࣎ ,࢚ሺ࢞࢞ࡾ =	 ࢚  ሻ࣎ = ࢞࢞ࡾ ,࢚ ࢚

• is called Autocorrelation Function of the noise

• is always a function of the interval τ between the two instants t1 and t2
• is also a function of t1 only for  non-stationary noise 

NOTE THAT:   

for a noise x the autocorrelation Rxx(τ) is an ensemble-average, 

for a signal x  the autocorrelation function Kxx (τ ) is a time-average

The noise mean square value is called NOISE POWER
it is the autocorrelation with τ = 0

ଶݔ ݐ ൌ ܴ௫௫ሺݐ, 0ሻ
for stationary noise it is constant at any t

ଶݔ ൌ ܴ௫௫ሺ0ሻ
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Power Spectrum of Noise
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Noise Description with the Power Specrum
Noise has power-type waveforms (divergent energy → ∞) 

which have statistical variations from waveform to waveform of the ensemble. 

By averaging over the ensemble of the autocorrelations of  the noise waveforms , 

the  concepts of power and power spectrum introduced for the signals

can be extended to the noise

ܲ ൌ lim
்→ஶ

 ௫	ଶሺఈሻ
ଶ்

்	ߙ݀
ି் ൌ lim

்→ஶ
 ௫	

ଶሺఈሻ
ଶ்

ஶ	ߙ݀
ିஶ ൌ lim

்→ஶ
 	 ሺሻ

మ

ଶ்
݂݀ஶ

ିஶ =

= lim
்→ஶ

	 ሺሻ
మ

ଶ்
݂݀ ൌஶ

ିஶ  lim
்→ஶ

	 ሺሻ
మ	

ଶ்
݂݀ஶ

ିஶ

Therefore, the Power Spectrum of the noise is defined as

ܵ௫ ݂ = lim
்→ஶ

	 ሺሻ
మ	

ଶ்
and the noise power is

ܲ ൌ න ܵ௫ ݂ ݂݀
ஶ

ିஶ
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Noise Description with the Power Spectrum

By averaging over the ensemble we can extend to the noise 

also the second definition of Power Spectrum introduced for the signals

ܵ௫ ݂ ௫௫ܭሾܨ = ߬ ሿ= ௫௫ܭ	ሾܨ ߬ 	 ሿ ൌ

ൌ ሾܨ lim
்→ஶ

  ௫ ఈ ௫ ఈାఛ ௗఈಮ
షಮ

ଶ்
]=

ൌ Fሾ lim
்→ஶ

ೣೣ, ఛ
ଶ்

ሿ ൌ lim
்→ஶ

ிሾೣೣ,ሺఛሻ] 
ଶ்

The Power Spectrum of the noise can be directly defined as

The noise power is

ܲ ൌ 	 න ܵ௫ ݂ ݂݀ ൌ
ஶ

ିஶ

௫௫ܭ 0

    2

lim
2

T
x T

X f
S f

T
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Bilateral and Unilateral Spectral Power Density
• The mathematical spectral density Sx (f) defined over - ∞ < f < ∞ , 

is a bilateral spectral density SxB (f)

attention is called on this fact by the second subscript B

• The noise power computed with the bilateral density SxB is

ܲ ൌ 	 ܵ௫ ݂ ݂݀ஶ
ିஶ

• Since SxB (f) is symmetrical   SxB (‐f) =  SxB (+f) ,  it is 

ܲ ൌ 2	  ܵ௫ ݂ ݂݀ ൌஶ
  2ܵ௫ ݂ ݂݀ஶ



• A unilateral «physical» spectral density SxU(f) ൌ 2ܵ௫(f) is usually employed in 

engineering tasks for making computations only in the positive frequency range

• The noise power computed with with the unilateral density SxU is

ܲ ൌ 	 ܵ௫ ݂ ݂݀ஶ
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Power Spectrum of Non-Stationary Noise
ܵ௫ ݂ ௫௫ܭ	ሾܨ =  ߬ 	 ሿ

௫	௫ܭ ߬ 	 results from the double average, 

first over the time ܭ௫௫ ߬ ൌ൏ ݔ ݐ ݐሺݔ  ߬ሻ  then over the ensemble

It can be shown that the order of averaging can be exchanged (see later) 

௫	௫ܭ ߬ 	 = ൏ ݔ ݐ ݔ ݐ  ߬ 	ൌ൏ ݔ ݐ ݐሺݔ  ߬ሻ 	ൌ	൏ ܴ௫௫ሺݐ, ݐ  ߬ሻ 

The power spectrum thus is related to the ensemble autocorrelation function

ܵ௫ ݂ ሾ൏ܨ = ܴ௫௫ሺݐ, ݐ  ߬ሻ  ] 

• For non‐stationary noise Sx(f) can be defined with reference to 
the time‐average of the ensemble autocorrelation function of the noise.

• For stationary noise there is no need of time-averaging: it is simply

൏ ܴ௫௫ሺݐ, ݐ  ߬ሻ 	ൌ ܴ௫௫ ߬

and     

ܵ௫ ݂ ሾܴ௫௫ሺ߬ሻሿܨ =
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APPENDIX : 
the order of  Time-Averaging and  Ensemble-Averaging 

can be exchanged in the definition of the Noise Power Spectrum  

Let’s verify that        ܭ௫	௫ ߬ 		ൌ	 ൏ ܴ௫௫ሺݐ, ݐ  ߬ሻ 
In fact:

௫	௫ܭ ߬ 	 ൌ lim
்→ஶ

 ௫ ఈ ௫ሺఈାఛሻ
ଶ்

்ߙ݀
ି் ൌ

ൌ lim
்→ஶ

 ௫ ఈ ௫ሺఈାఛሻ
ଶ்

்ߙ݀
ି்

ൌ lim
்→ஶ

න
ܴ௫௫	ሺߙ, ߙ  ߬ሻ	

2ܶ ߙ݀ ൌ
்

ି்
ൌ	൏ ܴ௫௫ሺݐ, ݐ  ߬ሻ 


