Sensors, Signals and Noise

COURSE OUTLINE

- \bullet **Introduction**
- \bullet Signals and Noise: 1) Description
- \bullet **Filtering**
- \bullet Sensors and associated electronics

Noise Description

- \triangleright Noise Waveforms and Samples
- \triangleright Statistics of Noise Samples and Probability Distribution (PD)
- \triangleright Complete Description of Noise with Probability Distributions
- ▶ Basic Description of Noise with the 2°order Moments of PD
- \triangleright Autocorrelation Function of Noise
- \triangleright Power Spectrum of Noise

and for those who trust only analytical demonstrations

 APPENDIX: Exchanging the order of Time-Averaging and Ensemble-Averaging in the definition of Power Spectrum

Set-Up of Sensor Measurements

3

Noise Waveforms and Samples

Noise waveforms (oscilloscope @ 50μs/div)

White Noise

spectrum *S ⁼ constant*

Random-Walk Noise spectrum $S = \frac{1}{f^2}$

Flicker Noise spectrum $S = \frac{1}{f}$

Noise Waveform Ensemble

Set of identical noise sources (many **identical** amplifiers or resistors or other)

Statistics of Noise Samples and Probability Distribution (PD)

Classifying the Amplitude of Noise Samples

The amplitude $x(t_1)$ of the noise waveform at time t_1 is compared to a scale of discrete values x_k spaced by constant interval $\Delta \mathsf{x}$ and is classified at the nearest value x_{k} of the scale A high number N of noise waveform is sampled and measured of which ΔN_k is the number of sample waveforms classified at x_k $\Delta f_k = \frac{\Delta N_k}{N}$ is called <u>statistical frequency</u> of the amplitude x_k

Noise Sample Statistics and Probability

Stationary and Non-stationary Noise

STATIONARY noise :

the **probability density is constant** in time $p = p(x)$

NON-STATIONARY noise :

the **probability density varies** in time $p = p(x, t)$

the probability density *p* **alone does not** give a complete description of the noise, in fact different cases can have equal probability density *p*

Noise Waveforms and Sample Statistics

Values $x(t_{1}^{\prime})$ and $x(t_{2}^{\prime})$ measured on a sample waveform at different $t_{1}^{}$ and $t_{2}^{}$ are random values with equal probability density $p_A(x)$ and they are

- •in practice identical for ultra-short interval τ
- •somewhat different for short interval ^τ
- •different and independent for longer interval τ

Noise Waveforms and Sample Statistics

Values $x(t_1)$ and $x(t_2)$ measured on a sample waveform at different t_1 and t_2 :

- •they are random values with probability density $p_B(x)$;
- •they are equal for any interval τ , short or long

Case B is different from A, but it can have **equal probability density** $p_{B}(x) = p_{A}(x)$

Complete Description of Noise with Probability Distributions

- \bullet For a proper description of the noise the marginal probability $p_m(x, t)dx$ of having a value *x* at time *t* is NOT sufficient
- The <u>joint</u> probability $p_j(x_1, x_2, t_1, t_2)dx_1 dx_2$ of having a value x_1 at time t_1 and a value x_2 at time t_2 <u>must also be considered</u>

Noise Description with Probability Distributions \bigodot Source $\Large{\textcircled{\small{2}}}$ ③ *x(t) t1 t2 ttt*τSource Source

A full description of the noise is obtained by knowing:

- •• The marginal probability density $p_m(x) = p_m(x; t_1)$ for every instant t_1 . For stationary noise p_m does NOT depend on time $t_1: p_m = p_m(x)$
- \bullet The **joint** probability density $p_i(x_1, x_2) = p_i(x_1, x_2; t_1, t_2) = p_i(x_1, x_2; t_1, t_1 + \tau)$ for **every couple** of instants t_1 and $t_2 = t_1 + \tau$. For stationary noise p_i depends only on the time interval *τ*, NOT on the time position t_1

Note: Time-Average and Ensemble-Average

Basic Description of Noise with 2nd order Moments of Probability Distribution

NOTE: Moments of Probability Distributions

NB: for clarity, we call here the two statistical variables ^x and ^y instead of x1 and ^x ²

Moments of a marginal $p(x)$ $m_n = \overline{x^n} = \int_{-\infty}^{\infty} x^n p(x) dx$ Moments of a joint $p(x,y)$ and $m_{jk} = \overline{x^j \, y^k} = \int_{-\infty}^{\infty} x^j \, y^k p(x,y) dx dy$

- the *mn* (and *mjk*) give information on the features of the distributions
- •as the order (*ⁿ* or *j+k*) increases, the information is increasingly of detail

Let's consider a description of noise limited to the 2° order moments, i.e. Mean square value (or variance)

$$
m_2 = \overline{x^2} = \int_{-\infty}^{\infty} x^2 p(x) dx = \sigma_x^2
$$

Mean product value (or covariance of *^x* and *y*)

 $m_{11} = \overline{xy} = \int_{-\infty}^{\infty} xy p(x, y) dx dy = \sigma_{xy}^2$

NB: it is obviously

 m_{o} = m_{oo} = 1 the total probability is normalized to 1 m_1 = m_{1o} = \bar{x} = 0 = \bar{y} = m_{01} the mean value of noise is zero

Noise Description with 2°order Moments

- \bullet • for <u>every instant t_1 </u> the <u>mean square value</u> (or variance) $\overline{x^2(t_1)} = \sigma_x^2(t_1)$ For stationary noise $\overline{x^2}$ does NOT depend on time t_1
- •• for <u>every couple</u> t_1 and $t_2 = t_1 + \tau$ the <u>meanproduct</u> $x(t_1)x(t_2) = x(t_1)x(t_1 + \tau)$ For stationary noise it depends only on the time interval **τ**, NOT on the time position **t**₁

Autocorrelation Function of Noise

Noise Description with the Autocorrelation Function

 $x(t_1)x(t_2) = x(t_1)x(t_1 + \tau) = R_{xx}(t_1, t_1 + \tau) = R_{xx}(t_1, t_2)$

- •is called **Autocorrelation Function** of the noise
- •• is <u>always</u> a function of the <u>interval</u> **τ** between the two instants t_1 and t_2
- • \bullet is also a function of t_1 only for <u>non-stationary</u> noise

NOTE THAT:

for a noise x the autocorrelation $R_{xx}(\tau)$ is an **ensemble-average**,

for a signal *x* the autocorrelation function K_{xx} (τ) is a <u>time-average</u>

The **noise mean square value** is called **NOISE POWER**

it is the autocorrelation with $τ = 0$

$$
\overline{x^2(t)} = R_{xx}(t,0)
$$

for stationary noise it is constant at any *^t*

$$
\overline{x^2} = R_{xx}(0)
$$

Power Spectrum of Noise

Noise Description with the Power Specrum

Noise has power-type waveforms (divergent energy $\rightarrow \infty$) which have statistical variations from waveform to waveform of the ensemble. By **averaging over the ensemble** of the autocorrelations of the noise waveforms , the concepts of power and power spectrum introduced **for the signals** can be **extended to the noise**

$$
P = \overline{\lim_{T \to \infty} \int_{-T}^{T} \frac{x^2(\alpha)}{2T} d\alpha} = \overline{\lim_{T \to \infty} \int_{-\infty}^{\infty} \frac{x_T^2(\alpha)}{2T} d\alpha} = \overline{\lim_{T \to \infty} \int_{-\infty}^{\infty} \frac{|x_T(f)|^2}{2T} df} =
$$

$$
= \int_{-\infty}^{\infty} \overline{\lim_{T \to \infty} \frac{|x_T(f)|^2}{2T} df} = \int_{-\infty}^{\infty} \overline{\lim_{T \to \infty} \frac{|x_T(f)|^2}{2T} df}
$$

Therefore, the Power Spectrum of the noise is defined as

$$
S_x(f) = \lim_{T \to \infty} \frac{|X_T(f)|^2}{2T}
$$

and the noise power is

$$
P = \int_{-\infty}^{\infty} S_x(f) df
$$

Noise Description with the Power Spectrum

By averaging over the ensemble we can extend to the noise also the second definition of Power Spectrum introduced for the signals

$$
S_{\chi}(f) = \overline{F[K_{xx}(\tau)]} = F[\overline{K_{xx}(\tau)}] =
$$

$$
= F[\lim_{T \to \infty} \frac{\int_{-\infty}^{\infty} x_T(\alpha) x_T(\alpha + \tau) d\alpha}{2T}] =
$$

$$
= F[\lim_{T \to \infty} \frac{k_{xx,T}(\tau)}{2T}] = \lim_{T \to \infty} \frac{F[\overline{k_{xx,T}(\tau)}]}{2T}
$$

The Power Spectrum of the noise can be directly defined as

$$
S_{x}(f) = \lim_{T \to \infty} \frac{|X_{T}(f)|^{2}}{2T}
$$

The noise power is

$$
P = \int_{-\infty}^{\infty} S_x(f) df = \overline{K_{xx}(0)}
$$

Bilateral and Unilateral Spectral Power Density

 \bullet • The mathematical spectral density $S_x(f)$ defined over - ∞ < f < ∞ ,

is a <u>bilateral</u> spectral density S_{xB} (f)

attention is called on this fact by the second subscript *B*

 \bullet \bullet The noise power computed <u>with the bilateral density</u> $S_{\mathsf{x} \mathsf{B}}$ is

$$
P = \int_{\overline{\mathbf{z}}^{\infty}}^{\infty} S_{xB}(f) df
$$

•• Since S_{xB} (f) is symmetrical $S_{xB}(-f) = S_{xB}(+f)$, it is

$$
P = 2 \int_0^\infty S_{xB}(f) df = \int_0^\infty 2S_{xB}(f) df
$$

- •A unilateral «physical» spectral density $S_{xU}(f) = 2S_{xB}(f)$ is usually employed in engineering tasks for making computations only in the positive frequency range
- •• The noise power computed with <u>with the unilateral density</u> S_{xU} is

$$
P = \int_0^\infty S_{xU}(f) df
$$

Power Spectrum of Non-Stationary Noise $S_x(f)$ = $F[K_{xx}(\tau)]$

 $K_{x\,x}(\tau)$ results from the double average,

first over the time $K_{xx}(\tau)=< x(t)x(t+\tau)>$ then over the ensemble

It can be shown that the order of averaging can be exchanged *(see later)* $K_{x,x}(\tau) = \langle x(t)x(t+\tau) \rangle = \langle x(t)x(t+\tau) \rangle = \langle R_{xx}(t, t+\tau) \rangle$

The power spectrum thus is related to the ensemble autocorrelation function

$$
S_x(f) = F[]
$$

•For **non-stationary noise** $S_x(f)$ can be defined with reference to the **time‐average of the ensemble autocorrelation** function of the noise.

•For **stationary** noise there is no need of time-averaging: it is simply

$$
\langle R_{xx}(t, t + \tau) \rangle = R_{xx}(\tau)
$$

and

$$
S_x(f) = F[R_{xx}(\tau)]
$$

APPENDIX :

the order of Time-Averaging and Ensemble-Averaging can be exchanged in the definition of the Noise Power Spectrum

Let's verify that
$$
\overline{K_{\chi}{}_{\chi}(\tau)} = \langle R_{\chi\chi}(t, t + \tau) \rangle
$$

In fact:

$$
\overline{K_{x x}(\tau)} = \overline{\lim_{T \to \infty} \int_{-T}^{T} \frac{x(\alpha)x(\alpha + \tau)}{2T} d\alpha} =
$$
\n
$$
= \overline{\lim_{T \to \infty} \int_{-T}^{T} \frac{x(\alpha)x(\alpha + \tau)}{2T} d\alpha}
$$
\n
$$
= \overline{\lim_{T \to \infty} \int_{-T}^{T} \frac{R_{xx}(\alpha, \alpha + \tau)}{2T} d\alpha} =
$$
\n
$$
= < R_{xx}(t, t + \tau) >
$$

