Sensors, Signals and Noise

COURSE OUTLINE

- Introduction
- Signals and Noise: 1) Description
- Filtering
- Sensors and associated electronics

Noise Description

- Noise Waveforms and Samples
- Statistics of Noise Samples and Probability Distribution (PD)
- Complete Description of Noise with Probability Distributions
- Basic Description of Noise with the 2°order Moments of PD
- Autocorrelation Function of Noise
- Power Spectrum of Noise

and for those who trust only analytical demonstrations

APPENDIX: Exchanging the order of Time-Averaging and Ensemble-Averaging in the definition of Power Spectrum

Set-Up of Sensor Measurements

SSN03a NOISE 1

Noise Waveforms and Samples

Noise waveforms (oscilloscope @ 50µs/div)

White Noise

spectrum *S = constant*

Random-Walk Noise spectrum $S = \frac{1}{f^2}$

Flicker Noise spectrum $S = \frac{1}{f}$

Noise Waveform Ensemble

Set of identical noise sources (many identical amplifiers or resistors or other)

Statistics of Noise Samples and Probability Distribution (PD)

Classifying the Amplitude of Noise Samples

The amplitude $x(t_1)$ of the noise waveform at time t_1 is compared to a scale of discrete values x_k spaced by constant interval Δx and is classified at the nearest value x_k of the scale A high number N of noise waveform is sampled and measured of which ΔN_k is the number of sample waveforms classified at x_k $\Delta f_k = \frac{\Delta N_k}{N}$ is called <u>statistical frequency</u> of the amplitude x_k

Noise Sample Statistics and Probability

Stationary and Non-stationary Noise

STATIONARY noise :

the **probability density is constant** in time p = p(x)

NON-STATIONARY noise :

the **probability density varies** in time p = p(x, t)

the probability density *p* alone does not give a complete description of the noise, in fact <u>different cases</u> can have <u>equal probability</u> density *p*

Noise Waveforms and Sample Statistics

Values $x(t_1)$ and $x(t_2)$ measured on a sample waveform at different t_1 and t_2 are random values with equal probability density $p_A(x)$ and they are

- in practice identical for ultra-short interval τ
- somewhat <u>different for short</u> interval τ
- different and independent for longer interval τ

Noise Waveforms and Sample Statistics

Values $x(t_1)$ and $x(t_2)$ measured on a sample waveform at different t_1 and t_2 :

- they are random values with probability density $p_B(x)$;
- they are equal for any interval τ , short or long

Case B is different from A, but it can have equal probability density $p_B(x) = p_A(x)$

Complete Description of Noise with Probability Distributions

- For a proper description of the noise the <u>marginal</u> probability p_m(x, t)dx of having a value x at time t is <u>NOT sufficient</u>
- The joint probability $p_j(x_1, x_2, t_1, t_2) dx_1 dx_2$ of having a value x_1 at time t_1 and a value x_2 at time t_2 must also be considered

A full description of the noise is obtained by knowing:

- The marginal probability density $p_m(x) = p_m(x; t_1)$ for every instant t_1 . For stationary noise p_m does NOT depend on time t_1 : $p_m = p_m(x)$
- The joint probability density p_j (x₁, x₂) = p_j(x₁, x₂; t₁, t₂) = p_j(x₁, x₂; t₁, t₁ + τ) for every couple of instants t₁ and t₂ = t₁ + τ.
 For stationary noise p_j depends only on the time interval τ, NOT on the time position t₁

Note: Time-Average and Ensemble-Average

Basic Description of Noise with 2nd order Moments of Probability Distribution

NOTE: Moments of Probability Distributions

NB: for clarity, we call here the two statistical variables x and y instead of x_1 and x_2

Moments of a marginal p(x) $m_n = \overline{x^n} = \int_{-\infty}^{\infty} x^n p(x) dx$ Moments of a joint p(x,y) $m_{jk} = \overline{x^j y^k} = \int_{-\infty}^{\infty} x^j y^k p(x,y) dx dy$

- the m_n (and m_{ik}) give information on the features of the distributions
- as the order (n or j+k) increases, the information is increasingly of detail

Let's consider a description of noise limited to the 2° order moments, i.e. Mean square value (or variance)

$$m_2 = \overline{x^2} = \int_{-\infty}^{\infty} x^2 p(x) dx = \sigma_x^2$$

Mean product value (or covariance of x and y)

$$m_{11} = \overline{xy} = \int_{-\infty}^{\infty} xy \, p(x, y) dx dy = \sigma_{xy}^2$$

NB: it is obviously

 $m_o = m_{oo} = 1$ the total probability is normalized to 1 $m_1 = m_{1o} = \bar{x} = 0 = \bar{y} = m_{01}$ the mean value of noise is zero

Noise Description with 2° order Moments

- for <u>every</u> instant t_1 the <u>mean square value</u> (or variance) $\overline{x^2(t_1)} = \sigma_x^2(t_1)$ For stationary noise $\overline{x^2}$ does NOT depend on time t_1
- for every couple t_1 and $t_2 = t_1 + \tau$ the meanproduct $\overline{x(t_1)x(t_2)} = \overline{x(t_1)x(t_1 + \tau)}$ For stationary noise it depends only on the time interval τ , NOT on the time position t_1

Autocorrelation Function of Noise

Noise Description with the Autocorrelation Function

 $\overline{x(t_1)x(t_2)} = \overline{x(t_1)x(t_1+\tau)} = R_{xx}(t_1, t_1+\tau) = R_{xx}(t_1, t_2)$

- is called **Autocorrelation Function** of the noise
- is <u>always</u> a function of the <u>interval</u> τ between the two instants t_1 and t_2
- is also a function of t_1 only for <u>non-stationary</u> noise

NOTE THAT:

for a noise x the autocorrelation $R_{xx}(\tau)$ is an <u>ensemble</u>-average,

for a signal x the autocorrelation function K_{xx} (τ) is a <u>time-average</u>

The noise mean square value is called NOISE POWER

it is the autocorrelation with τ = 0

$$\overline{x^2(t)} = R_{xx}(t,0)$$

for stationary noise it is constant at any t

$$\overline{x^2} = R_{xx}(0)$$

Power Spectrum of Noise

Noise Description with the Power Specrum

Noise has power-type waveforms (divergent energy $\rightarrow \infty$) which have statistical variations from waveform to waveform of the ensemble. By **averaging over the ensemble** of the autocorrelations of the noise waveforms, the concepts of power and power spectrum introduced <u>for the signals</u> can be **extended to the noise**

$$P = \overline{\lim_{T \to \infty} \int_{-T}^{T} \frac{x^{2}(\alpha)}{2T} d\alpha} = \overline{\lim_{T \to \infty} \int_{-\infty}^{\infty} \frac{x_{T}^{2}(\alpha)}{2T} d\alpha} = \overline{\lim_{T \to \infty} \int_{-\infty}^{\infty} \frac{|x_{T}(f)|^{2}}{2T} df} = \int_{-\infty}^{\infty} \overline{\lim_{T \to \infty} \frac{|x_{T}(f)|^{2}}{2T}} df$$

Therefore, the Power Spectrum of the noise is defined as

$$S_{x}(f) = \lim_{T \to \infty} \frac{|X_{T}(f)|^{2}}{2T}$$

and the noise power is
$$P = \int_{-\infty}^{\infty} S_{x}(f) df$$

Noise Description with the Power Spectrum

By averaging over the ensemble we can extend to the noise also the second definition of Power Spectrum introduced for the signals

$$S_{x}(f) = \overline{F[K_{xx}(\tau)]} = F[\overline{K_{xx}(\tau)}] =$$
$$= F[\lim_{T \to \infty} \frac{\int_{-\infty}^{\infty} x_{T}(\alpha) x_{T}(\alpha + \tau) d\alpha}{2T}] =$$
$$= F[\lim_{T \to \infty} \frac{k_{xx,T}(\tau)}{2T}] = \lim_{T \to \infty} \frac{F[\overline{k_{xx,T}(\tau)}]}{2T}$$

The Power Spectrum of the noise can be directly defined as

$$S_{x}(f) = \lim_{T \to \infty} \frac{\left|X_{T}(f)\right|^{2}}{2T}$$

The noise power is

$$P = \int_{-\infty}^{\infty} S_{x}(f) df = \overline{K_{xx}(0)}$$

Bilateral and Unilateral Spectral Power Density

• The mathematical spectral density $S_x(f)$ defined over - $\infty < f < \infty$,

is a <u>bilateral</u> spectral density S_{xB} (f)

attention is called on this fact by the second subscript *B*

• The noise power computed with the bilateral density S_{xB} is

$$P = \int_{-\infty}^{\infty} S_{xB}(f) df$$

• Since S_{xB} (f) is symmetrical $S_{xB}(-f) = S_{xB}(+f)$, it is

$$P = 2 \int_0^\infty S_{xB}(f) df = \int_0^\infty 2S_{xB}(f) df$$

- A <u>unilateral</u> «physical» spectral density $S_{xU}(f) = 2S_{xB}(f)$ is usually employed in engineering tasks for making computations only in the positive frequency range
- The noise power computed with with the unilateral density S_{xU} is

$$P = \int_0^\infty S_{xU}(f)df$$

Power Spectrum of Non-Stationary Noise $S_x(f) = F[\overline{K_{xx}(\tau)}]$

 $\overline{K_{xx}(\tau)}$ results from the double average,

first over the time $K_{xx}(\tau) = \langle x(t)x(t + \tau) \rangle$ then over the ensemble

It can be shown that the order of averaging can be exchanged (see later) $\overline{K_{xx}(\tau)} = \overline{\langle x(t)x(t+\tau) \rangle} = \langle \overline{x(t)x(t+\tau)} \rangle = \langle R_{xx}(t,t+\tau) \rangle$

The power spectrum thus is related to the ensemble autocorrelation function

 $S_x(f) = F[< R_{xx}(t, t + \tau) >]$

• For non-stationary noise $S_x(f)$ can be defined with reference to the time-average of the ensemble autocorrelation function of the noise.

• For **stationary** noise there is no need of time-averaging: it is simply

$$\langle R_{\chi\chi}(t,t+\tau) \rangle = R_{\chi\chi}(\tau)$$

and

$$S_x(f) = F[R_{xx}(\tau)]$$

APPENDIX :

the order of Time-Averaging and Ensemble-Averaging can be exchanged in the definition of the Noise Power Spectrum

Let's verify that
$$\overline{K_{xx}(\tau)} = \langle R_{xx}(t, t + \tau) \rangle$$

In fact:

$$\overline{K_{x x}(\tau)} = \overline{\lim_{T \to \infty} \int_{-T}^{T} \frac{x(\alpha)x(\alpha+\tau)}{2T} d\alpha} =$$

$$= \lim_{T \to \infty} \int_{-T}^{T} \frac{\overline{x(\alpha)x(\alpha+\tau)}}{2T} d\alpha$$

$$= \lim_{T \to \infty} \int_{-T}^{T} \frac{R_{xx}(\alpha, \alpha+\tau)}{2T} d\alpha =$$

$$= \langle R_{xx}(t, t+\tau) \rangle$$

