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Sensors, Signals and Noise 

COURSE OUTLINE

• Introduction

• Signals and Noise: 3) Analysis and Simulation

• Filtering

• Sensors and associated electronics
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Noise Analysis and Simulation

 White Noise

 Band-Limited White Noise (Wide-Band Noise)

 Basic Parameters of Wide-Band Noise

 Foundations of White-Noise Filtering

 Generation and Simulation of Any Noise by a Poisson Process

and for those who wish to gain a better insight

 APPENDIX: Noise Power Transients
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White Noise 
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White Noise (stationary)
IDEAL «white» noise

is a concept extrapolated from Johnson noise and shot noise 
defined by its essential feature:

no autocorrelation at any time distance τ, no matter how small

ܴ ߬ ൌ ܵ ∙ ߜ ߬

and therefore constant spectrum

ܵ ݂ ൌ 	ܵ

In reality such a noise does not exist: it would have divergent power

REAL «white» noise has
• Very small width of autocorrelation, shorter than the minimum time interval of 

interest in the actual case and therefore approximated to zero
• Very wide band with constant spectral density Sb , wider than the maximum 

frequency of interest in the actual case and therefore approximated to infinite

Rnn

τ
Sn

f
2n 

area Sb
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White Noise (non-stationary)

Also in non‐stationary cases  the IDEAL «white» noise 
is defined by the essential characteristic feature:

no correlation at any finite time distance τ, no matter how small,
but the noise intensity is no more constant, it varies with time t

that is  
the autocorrelation function is δ-like, 
but has time-dependent area ܵሺݐሻ

Rnn

τ

area Sb(t)

     ,nn bR t t S t    
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Filtering white noise is simple

Ts

t1 t2 t3 tk tN

For clarity, let’s consider a discrete case: 
linear filtering in digital signal processing: 

• Sample n1 at t1 and multiply by a weight w1 , 
• sample n2 at t2 = t1 +Ts and multiply by a weight w2 and sum
• and  so on ....

The filtered noise nf is

݊ ൌ ଵ݊ଵݓ  ଶ݊ଶݓ 	… . . ൌ ∑ ݊ேݓ
ୀଵ

and its mean square value is

݊ଶ ൌ ଵଶ݊ଵݓ
ଶ  ଶݓ

ଶ
݊ଶଶ 	… ଵ݊ଵݓ ∙ ଶ݊ଶݓ  ଵ݊ଵݓ ∙ ଷ݊ଷݓ  ⋯ ൌ

ൌ ଵଶ݊ଵଶݓ  ଶଶ݊ଶଶݓ 	… ଵݓ	 ଶ݊ଵ݊ଶݓ  ⋯	ଷ݊ଵ݊ଷݓଵݓ

n(t)
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Filtering white noise is simple

݊ଶ ൌ ଵଶ݊ଵݓ
ଶ  ଶݓ

ଶ
݊ଶଶ 	… ଵ݊ଵݓ ∙ ଶ݊ଶݓ  ଵ݊ଵݓ ∙ ଷ݊ଷݓ  ⋯ ൌ

ൌ ଵଶ݊ଵଶݓ  ଶଶ݊ଶଶݓ 	… ଵݓ	 ଶ݊ଵ݊ଶݓ   ...	ଷ݊ଵ݊ଷݓଵݓ

If  noise at interval Ts  is not correlated, then  all rectangular terms vanish   
݊ଵ݊ଶ ൌ 	݊ଵ݊ଶ ൌ ⋯ ൌ 0

and  the result is simply a sum of squares,  even in case of non-stationary noise

݊ଶ ൌ ଵଶ݊ଵଶݓ  ଶଶ݊ଶଶݓ 	… ൌ

ൌ ∑ ଶ݊ଶேݓ
ୀଵ

If the noise is stationary

݊ଵଶ ൌ ݊ଶଶ ൌ ݊ଷଶ ൌ ⋯ ൌ ݊ଶ

there is a further simplification 

݊ଶ ൌ ݊ଶ	ሺݓଵ
ଶ ଶଶݓ 	… ሻ ൌ

ൌ 	݊ଶ 	∑ ଶேݓ
ୀଵ

we will see later that also with continuous filtering white noise brings similar simplification
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Band-Limited White Noise 

or 

Wide-Band Noise
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Band-limited white noise 
(wide-band noise)

• Real white noise = white noise with band limited at high frequency
• The limit may be inherent in the noise source or due to low-pass filtering

enforced by the circuitry. Anyway, in all real cases there is such a limit 
• A frequent typical case is the Lorentzian spectrum: 

band limited by a simple pole with time constant Tp , pole  frequency  fp =  1/ 2πTp

Sn(f)

f

SB

Rnn(τ)

τ

2n

  2 pT
nnR n e
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SSN03c - NOISE 3Sergio Cova – SENSORS SIGNALS AND NOISE rv 2017/01/19 10

Basic Parameters of Wide-Band Noise
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Simplified description of wide-band noise

Sn(f)

f

2Tn

Rnn(τ)

τ



 ⁄

in time: Rnn(τ) triangular approx,  half-width 2Tn
a) equal msq noise : ܴ 0 ൌ 

b) equal spectral density:  [area of Rnn(τ)] =  Sb , 
i.e.    ݊ଶ	2	 ܶ ൌ 	 ܵ
Correlation width = area/peak

∆߬ ൌ 2 ܶ	

2fn

Sb
in frequency: Sn (f) rectang approx,  half-width fn
a) equal msq noise : [area of Sn (f)] = 	

i.e.        ܵ2	 ݂ ൌ 

b) equal spectral density: ܵ 0 ൌ ܵ
Noise bandwidth:  area/peak

	∆݂ ൌ 2 ݂

Note that  ∆߬ ∙ ∆݂ ൌ 1 which is consistent with   ܵ ݂ ൌ ሾܴܨ ߬ ሿ

The true Rnn(τ) and Sn (f) can be approximated by simple functions 
retaining  the noise main features:  

a) equal mean square  and     b) equal spectral density  Sb
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f

τ

SB

2n

  2 pT
nnR n e








 
 2

1 2
B

n

p

SS f
fT




Simplified description of Lorentzian spectrum

  2 2B nn pS R d n T 



 

 2 1
2n B

p

n S f df S
T




 

2Tn‐2Tn

fn‐ fn

12
2n

p

f
T



n pT T

Note that   fn ് fp , namely 
1

4 2n p
p

f f
T


 

in time

in frequency
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Foundations 

of White-Noise Filtering
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Noise filtering clarified
by the Poisson pulse model

• Noise is a random superposition of elementary pulses

• The elementary pulse type (i.e. pulse waveform and its F-transform) defines 
the noise type (i.e. autocorrelation shape and spectrum shape)

• The passage through a linear constant-parameter filter modifies the 
elementary pulse type

• The pulse modification causes a corresponding modification of the noise

• Noise filtering can thus be understood, studied and evaluated by 
understanding, studying and evaluating the filtering of the elementary pulses
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Low-pass filtering of White noise

R

R

Va

C

shot current white noise:

ܵ ݂ ≅ ܫݍ for   f<< 10GHz
ܴ ߬ ≅ ሺ߬ሻߜܫݍ for τ >> 100ps

diode current: elementary short pulses
with  rate    ൌ ܫ ⁄ݍ ,  ܶ ≅ ݏ100
approximate  δ-pulses
݄ݍ ݐ ≅ ߜݍ ݐ

current in R: elementary exponential pulses 
with rate   ൌ ܫ ⁄ݍ ,  ܶ ൌ ܥܴ
ݍ ∙ ݂ ݐ

݂ ݐ ൌ
1
ܶ
1ሺݐሻ݁

ି௧
்ൗ

ܨ ݂ ൌ 	
1

1  ݂ߨ2݆ ܶ

e.g.  with R= 100kΩ and  C = 10pF we have  Tf = 1μs  

t

t

ݍ
ܶ

ݍ
ܶ
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R C

Input noise (current in the diode): 
δ-like autocorrelation (width 	ൎ (ݏ100

ܴ ߬ ≅ ሺ߬ሻ    for τ >> 100psߜܫݍ

Rii

Ruu

Output noise (current in R): 
autocorrelation function

ܴ௨௨ ߬ ൌ ܫݍ ∙ ݇ ሺ߬ሻ

݇ ߬ ൌ 	
1
2 ܶ

	݁
ି ఛ
்

Tf = R C = 1μs

ܫݍ
2 ܶ

ܫݍ
ܶ

τ

τ

To compare msq values of noise before and after filtering 
compare the central values of autocorrelation functions 

Low-pass filtering of White noise: time domain view
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R C

Input noise (diode current): 
spectral density Si constant 
(bandwidth 	݂݅	 ൎ (ݖܪܩ	10

ܵ ݂ ൌ 	 ܵ    for f << 10 GHz

Output noise (current in R): 
spectral density function Su (f)

ܵ௨ ݂ ൌ ܫݍ ∙ ሺ݂ሻܨ ଶ

ሺ݂ሻܨ ଶ ൌ 	
1

1  ሺ2݂ߨ ܶሻଶ

Tf = R C = 1μs

Si(f)

f

qI

Su(f)

f
Pole frequency  ݂ ൌ 1 ߨ2 ܶ⁄

qI

Noise bandwidth
݂ ൌ

గ
ଶ ݂≈ 250kHz

Low-pass filtering of White noise: frequency domain view

To compare msq values of noise before and after filtering 
compare the areas of input and output spectral densities

݂݅	 ൎ ݖܪܩ	10
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Generation and Simulation 
of Any Noise

by a Poisson Process
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Generation of any noise from Poisson process

h(t)
(δ‐response)

x(t) y(t)

Poisson process
(δ-pulses) Output NoiseConstant‐Parameter

Linear filter

p pulse rate  (p/s)
Q  pulse area

Tranfer Function
H(f) = F[h(t)]

2

2

( ) ( )

( )
xx

x

R pQ

S f pQ

   




Filter autocorrelation

  ( ) ( )hhk h t h t dt 



 

 

2

22

( ) ( )

( )

yy hh

y

R pQ k

S f pQ H f

  




Output Noise White Input Noise 
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Generation of any noise from Poisson process
For producing a given Sy(f) (i.e. a given Ryy(τ)= F‐1[Sy(f)] )  the filter must have

• H(f)|2   = Sy(f)  normalized to 1 at f=0

• khh(τ) =  Ryy(τ) normalized to unit area

Example: band-limited white noise
 2

1 1
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Appendix:
Noise Power Transients

Q:  how does the noise power rise 
when a noise source is switched on ?

A: the Poisson model clarifies!
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Rise-time of the Noise power

h(t)
H( ω)

Poisson process
Q δ( t)  pulses 

p pulses/s
Actual noise ny

Linear filter
S

Contact 
closed
at t=0 tt= 0

t= 0

Noise switch-on at t=0 modeled by closing at t=0 the switch at the filter input.

The mean square output at time t is computed by Campbell’s theorem 

but integrating only over the interval where output pulses occur, i.e. for 0 < α < t, 

 2 2 2

0
( )yn h

t
t pQ d  

Noise modeling by Poisson process also shows how noise rises after switch-on

αα

t
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Rise-time of real white noise
The rise of the output noise intensity  can be observed by computing the root-mean 
square noise (rms) versus time t (normalized to unit spectral density of the input 
Poisson noise)

   2
2

2 0
( )y

y

n t tt h d
pQ

    

Let’s consider real White Noise with band-limit due to a simple pole with time constant  Tp

• The noise is modeled by pulses

• The rise of the rms noise is

1( ) 1( )p

t
T

p

h t e t
T
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Moderately Wide‐band Noise

• the time constant Tp is longer and the intensity rise is slower.

In the first part                  and the intensity rises approximately as ݐ

24

Rise-time of real white noise

Wide‐band «white» Noise 

• The time constant Tp is short and the intensity (rms) rises swiftly, reaching 

in a few Tp the steady value
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Rise-time of random-walk noise
«Random‐Walk» Noise» 
• denotes noise with spectral density   ∝ 1/ω2 .

• is generated by integration of white noise  
(e.g. shot current noise Si = 2qI in capacitor C voltage noise Sv = 2qI/ C2 ω2 )

• is modeled by step elementary pulses  h(t) = 1(t)  

• The variance rises as ݐ

• At long time  t ∞ the variance is divergent
In the frequency domain this corresponds to the power over a band extended 
down to very low frequency  f 0

  2

0 0
( )y

t tt h d d t      

22
20 0

1lim ( ) lim
i ii i

y f ff f
H f df df

f
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 y t t 

Rise-time of random-walk noise
Integrator 
h(t)=1(t)

Poisson process
(δ-pulses) 

Random-walk noise
y(t)

S

S-down

Integrator 
output
y(t)

t
S-up


