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Noise Analysis and Simulation

» White Noise

» Band-Limited White Noise (Wide-Band Noise)

» Basic Parameters of Wide-Band Noise

» Foundations of White-Noise Filtering

» Generation and Simulation of Any Noise by a Poisson Process

and for those who wish to gain a better insight

> APPENDIX: Noise Power Transients
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White Noise
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White Noise (stationary)

IDEAL «white» noise
is a concept extrapolated from Johnson noise and shot noise
defined by its essential feature:
no autocorrelation at any time distance t, no matter how small

Rnn
Run(T) = S+ 8(7) __—area s,
and therefore constant spectrum > !
7S:

Sn(f) = Sp

>f

In reality such a noise does not exist: it would have divergent power N’ — o

REAL «white» noise has

* Very small width of autocorrelation, shorter than the minimum time interval of
interest in the actual case and therefore approximated to zero

* Very wide band with constant spectral density S, , wider than the maximum
frequency of interest in the actual case and therefore approximated to infinite
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White Noise (non-stationary)

Also in non-stationary cases the IDEAL «white» noise
is defined by the essential characteristic feature:

no correlation at any finite time distance t, no matter how small,
but the noise intensity is no more constant, it varies with time t
that is
the autocorrelation function is 6-like,

but has time-dependent area S, (t)

Rnn (t,t+T):Sb (t)5(7) Rnn
/ area S,(t)
>
T
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Filtering white noise is simple

n(t)

t; L, t3 i Iy

For clarity, let’s consider a discrete case:
linear filtering in digital signal processing:
e Sample n, at t; and multiply by a weight w,,

* sample n, att, =t, +T. and multiply by a weight w, and sum
e and soon....

The filtered noise ng is

_ _ VN
e = winly + wWonp + o= Yjeoq Wiy

and its mean square value is

_ 2
2
ne2 =wing” +wy mp% + ot wing cwong + wing cwang + o =

= win.2 + wo?ny? + .. Wy Wyl T, + WywsTiyig + ++

Sergio Cova — SENSORS SIGNALS AND NOISE SSNO3c - NOISE 3 rv2017/01/19




Filtering white noise is simple

_ 2
2
N2 =wing” +wy 1% + ot wing cwong +wing cwang + o =

= W12n1 + Wy Tl22 + ... W1 Wonin, + WiW3ning +...

If noise atinterval T, is not correlated, then all rectangular terms vanish

nn, = nqn, = -+ =0
and the result is simply a sum of squares, even in case of non-stationary noise

nf —W1TL1 + wy? n 24+ .

If the noise is stationary

N2 = Ny2 = Nz = -+ = n2
there is a further simplification
—— _ 5 2
ne? =n? (wy ™+ wy* + ..) =
_ N 2
= N* Yp=1 Wy
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Band-Limited White Noise
or

Wide-Band Noise
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Band-limited white noise
(wide-band noise)

e Real white noise = white noise with band limited at high frequency

 The limit may be inherent in the noise source or due to low-pass filtering
enforced by the circuitry. Anyway, in all real cases there is such a limit

* A frequent typical case is the Lorentzian spectrum:
band limited by a simple pole with time constant T, pole frequency f, = 1/2nTp

1+(271T,)
15,0

>
T

Sergio Cova — SENSORS SIGNALS AND NOISE SSNO3c - NOISE 3 rv2017/01/19




Basic Parameters of Wide-Band Noise
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Simplified description of wide-band noise

The true R, (t) and S, (f) can be approximated by simple functions
retaining the noise main features:

a) equal mean squareﬁ and b) equal spectral density S,

in time: R (7) triangular approx, half-width 2T,
R () A g PP

n2 a) equal msq noise : R,,,(0) = n?
T b) equal spectral density: [area of R, (T)] = S,,

n T w22 ie. n22T, =S,

Correlation width = area/peak
At = 2T,
in frequency: S, (f) rectang approx, half-width f,

a) equal msq noise : [area of S, (f)] =n2

i.e. sz fn = nz

N

f> b) equal spectral density: S,,(0) = S,

\ 4

Noise bandwidth: area/peak
Af =2f,
Note that At -Af = 1 which is consistent with S,,(f) = F[R,;;,(7)]
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Simplified description of Lorentzian spectrum

id

p R, (r)=n% " Sy =[ R, (r)dr=n’2T,

in time T =T

1
S /\ in frequency 2fn=i
2T

;_/,/ g i

'-fn .fn f

Note that f, # f,, namely f, = 5 fp
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Foundations

of White-Noise Filtering
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Noise filtering clarified
by the Poisson pulse model

 Noise is a random superposition of elementary pulses

* The elementary pulse type (i.e. pulse waveform and its F-transform) defines
the noise type (i.e. autocorrelation shape and spectrum shape)

e The passage through a linear constant-parameter filter modifies the
elementary pulse type

 The pulse modification causes a corresponding modification of the noise

* Noise filtering can thus be understood, studied and evaluated by
understanding, studying and evaluating the filtering of the elementary pulses
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Low-pass filtering of White noise

shot current white noise: Y
Si(f) =ql for f<<10GH:z

VG
R;i(t) = qlé(t) fort>>100ps
“n 4
diode current: elementary short pulses T,
R with rate p=1/q, T, = 100ps
approximate 6&-pulses

qh(t) = qé(t) Y

i 4

current in R: elementary exponential pulses

withrate p =1/q, Tr = RC R
R 1 ¢

C Fw=—1we
f
p—— _ 1
F(f) = 1+ j2nfT;

e.g. with R=100kQ and C=10pF we have T,=1us
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Low-pass filtering of White noise: time domain view

Input noise (current in the diode): Ri §£-"==-%
6-like autocorrelation (width = 100ps)
R;i(t) = qlé(t) fort>>100ps ql
Th
T,=RC=1us

é < >
R C T
e N 3 m—
To compare msq values of noise before and after filtering

— compare the central values of autocorrelation functions
Output noise (current in R):

autocorrelation function R A

uu

Ry (7) = ql “ k¢f (1)
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Low-pass filtering of White noise: frequency domain view

A
Input noise (diode current): Silf)
spectral density S, constant = (T """
(bandwidth f;, = 10 GHZz) fi =~ 10GHz
Sl(f) — Sb fOI’f<<10 GHz ql ................... >
T,=RC=1us >
J1T" f
“a é —
To compare msq values of noise before and after filtering
—1— compare the areas of input and output spectral densities

Su(f)

Output noise (current in R):
spectral density function S, (f)

Su(f) =ql - IF(N)I? gl
=—,//t/

Pole frequency f, = 1/2nTf

Noise bandwidth

T

fn = Efpz 250kHz

————__1

IF(H)I? =
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Generation and Simulation
of Any Noise
by a Poisson Process
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Generation of any noise from Poisson process

Poisson process

— Constant-Parameter mmmmm) Output Noise

(6-pulses) Linear filter
] ] X(t) y(t)
> | hmo WWN»
(6-response)
p pulse rate (p/s) Filter autocorrelation
A pulse area ki (7)= [ h(O)h(t+7)dt

Tranfer Function

H(f) = Flh(t)]

White Input Noise Output Noise
{RXX () = pQ*5(z) ; R,y () = pQ” Ky (7)
, ——————>
5,(f)=pQ S, (f)=pQ*|H (f)f
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Generation of any noise from Poisson process

For producing a given S (f) (i.e. a given R (1)= F'1[Sy(f)] ) the filter must have
* H(f)|? =S,f) normalized to 1 at f=0

* kyy(t)= R,(t) normalized to unit area

1 1

Example: band-limited white noise S =S

H ()

1 1+(f/1,) " 27T,

1+ jaT,

x(t) Poisson input

N
7

t

h(t) = Tie T 1(t)

p

S SN

y(t) Noise output

x(t) R y(t) b i b
—> W > f
T C
RC=T, L 2 2 2 1
- S,(f)=pQ*|H(f) =pQ

1+(f/1,)

with f =——
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Appendix:
Noise Power Transients

Q: how does the noise power rise
when a noise source is switched on ?

A: the Poisson model clarifies!
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Rise-time of the Noise power

Noise modeling by Poisson process also shows how noise rises after switch-on

Poisson process

Q8(t) pulses Contact Actual noise n
p pulses/s closed /
at t=0 t=0 t
t= 0 t \ Linear filter | |
I J | I l
I I S I I
I ‘ I - h(t) > | \*— >
| 1 g ‘ H( w) l l
l | I l
l | i 1
< : a

Noise switch-on at t=0 modeled by closing at t=0 the switch at the filter input.
The mean square output at time t is computed by Campbell’s theorem

but integrating only over the interval where output pulses occur, i.e.forO<a<t,

n2(1) = pQ’ [ W’ (@)dar
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Rise-time of real white noise

The rise of the output noise intensity can be observed by computing the root-mean
square noise (rms) versus time t (normalized to unit spectral density of the input

Poisson noise)
/ ny(t) _ [et,

Let’s consider real White Noise with band-limit due to a simple pole with time constant T,
t

1 _ —
e The noise is modeled by pulses  h(t) = T_e P 1(t)
p
* The rise of the rms noise is
1 2a 2t
t _2a _2t
o, ()= [ Se "da = |2|1-¢ "
°T, p
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Rise-time of real white noise

_2a _2t
7, ()=[1e "da= [ 1

p

Wide-band «white» Noise

* The time constant T, is short and the intensity (rms) rises swiftly, reaching

inafew T, the steady value

— for t>>Tp

Moderately Wide-band Noise
* the time constant T, is longer and the intensity rise is slower.

In the first part t < TIO and the intensity rises approximately as v/t

2t
o, (t)= |—=|1-¢ © vt

2T T
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Rise-time of random-walk noise

«Random-Walk» Noise»

denotes noise with spectral density « 1/w?.

is generated by integration of white noise
(e.g. shot current noise S; = 2g/ in capacitor C = voltage noise S, = 2ql/ C? w?)

is modeled by step elementary pulses h(t) = 1(t)

The variance rises as v/t

\/j h?(a)da = \/j da =

At long time t 2 oo the variance is divergent
In the frequency domain this corresponds to the power over a band extended
down to very low frequency f > 0

oy =1 =lim [ [H()f df_nmj L o
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Rise-time of random-walk noise

Poisson process Integrator
(6-pulses) h(t)=1(t)

R aral

Random-walk noise

y(t)

S-up —— I S-dOWN e

Integrator
output

y(t)
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