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Sensors, Signals and Noise 

COURSE OUTLINE

• Introduction

• Signals and Noise

• Filtering: Band-Pass Filters 2 – BPF2

• Sensors and associated electronics
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Band-Pass Filters 2

� Band-pass filtering with High-pass plus Low-Pass filters (CR - RC and LR – RC) 

� LCR  parallel Resonant Filter

� Pro’s and Con’s of real tuned filters

� Appendix: LCR series Resonant Filter
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Band-pass filtering with

High-pass plus Low-Pass filters

(CR - RC and LR – RC) 
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RC lowpass plus CR highpass = bandpass
Cascaded two-cell filter: 

low-pass T1 =R1C1 fp1= 1/2πT1

high-pass T2= R2C2 fp2= 1/2πT2
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RC lowpass plus CR highpass = bandpass
Plots of |H(f)|  with fp = 1 

Linear – linear plot 

|H(f)|  vs.  f

Log – Log plot (Bode plot)

|H(f)|  vs.  f
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3dB-down Bandwidth of CR-RC
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White noise bandwidth of CR-RC
From the definition of white noise bandwidth  ��� (with unilateral SB)

( )
( )

2
2

2

2 2 20 0 02 2 2

2

21 11

p

B B B p B p

p

f f x x x
n S df S f dx S f dx

x xf f

∞ ∞ ∞
= ⋅ = ⋅ = ⋅ ⋅

     + ++      

∫ ∫ ∫

2 2 00
0

1 1 1 1

2 1 2 1 2 4
B p B p B p

x
S f dx S f arctgx S f

x x

π∞
∞ ∞  

= ⋅ − + = ⋅ = ⋅ 
+ +  

∫

( )
2

2 1

4
B B p n B nn S H f f S f= ⋅ ⋅∆ = ⋅ ⋅∆

by comparison with the computed*  output power

1

2 2
n p pf f f

T

π
π∆ = = = ∆we get 

7

( ) 22

0 4
B B n B pn S H f df S f

π∞
= ⋅ = ⋅ ⋅∫

* Noise computation



SSN8b  Band-Pass Filters BPF 2Sergio Cova – SENSORS SIGNALS AND NOISE rv 2016/04/20

δ-response of the CR-RC
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LR parallel high pass plus RC parallel low-pass
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Let us take equal resistances Ra = Rb , so that the high-pass filter at high frequency (well in 

its passband, far above the pole fp) has impedance equal to the low-pass filter at low 
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LR parallel high pass plus RC parallel low-pass

H(jω) is the adimensional transfer, i.e. the «gain» from input current to output 

current in the resistor Rb = Ro .  It is confirmed that at the band-center fp

and
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This strong attenuation occurs because at  f=fp only a fraction 1 2⁄ of the

input current flows in the resistor Ra of the input cell and is transferred to the 

output cell, where again only a fraction 1 2⁄ flows in the resistor Rb . 

This issue is overcome by employing a resonant circuit instead of a

LR high-pass plus a decoupled RC low-pass
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LCR  parallel Resonant Filter



SSN8b  Band-Pass Filters BPF 2Sergio Cova – SENSORS SIGNALS AND NOISE rv 2016/04/20

From LR-RC to damped resonant circuit

We will show that this filter:

• is resonant at with characteristic resistance

• is critically damped (i.e. it has two real and coincident poles) 

• at band center fo the L and C reactance compensate each other, so that 

the impedance is purely resistive |Z(fo)| = R and all the input current flows in R.

That is, at f = fo there is no attenuation   |H(fo )|= 1

and we will deal with the question: 

• can the bandpass filtering be improved by reducing the damping,

that is, by using higher resistance R > Ro/2 ? 
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Taking out the buffer (the transconductance amplifier) we have
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LRC parallel resonant filter
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At the resonance frequency the reactive impedances cancel each other

that is 

(amplitude of voltage on C) / (amplitude of current in L ) 
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LRC parallel resonant filter

The poles of H(s) are
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LRC parallel resonant filter
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The δ-response h(t) is: 

• damped (real poles) if                 , which implies

• critically damped (coincident real poles) if                  ,   that is if 

• oscillatory (complex poles) if , that is with

In the oscillatory cases

• The higher is R with respect to Ro , the lower is the dissipation

and the slower the damping of the oscillation
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Resonator Quality Factor Q
The energy E stored in the circuit oscillates from C to L and back while it decays 

exponentially due to dissipation in R.  At the V maxima the energy is all in C, hence the 

decay is traced by the envelope of the V2 oscillation, so that                               

The relative loss rate in time is

It is more significant, however, the loss rate referred to the progress of the oscillation, 

that is, referred to the oscillation phase                   rather than time t

By setting                 we get                                     and 

The lower is this loss rate, the higher is the resonator quality. 

The reciprocal of this relative loss rate is defined Quality Factor Q of the resonator

that is 

NB: with high Q the relative energy loss in 1 oscillation period is small and can be 

evaluated by a linear approximation
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The higher is R >> Ro the lower is 

the dissipation (Q � ∞  for  R � ∞)
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LRC resonant filter: δ-response and weighting function

with fo = 1  and Q = 10
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LRC resonant filter: δ-response
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LRC resonant filter: 

δ-response and weighting function
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LRC resonant filter transfer function
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Taking into account

the transfer can be expressed in terms of resonance frequency ωo and quality factor Q 
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LRC resonant filter transfer function: phase
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LRC resonant filter transfer function: phase

1 2
4

0

f

0°

100°

100°

f

3

1 20 3

Q = 5

Q = 50

fo = 1

fo = 1

0°

100°

100°

ϕ = arg H

ϕ = arg H



SSN8b  Band-Pass Filters BPF 2Sergio Cova – SENSORS SIGNALS AND NOISE rv 2016/04/20 23

LRC resonant filter transfer function: module
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• «Higher wing» approximation valid for  ω >> ωo

i.e.                            (extrapolation at ω = ωo is                         )
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LRC resonant filter transfer function: module
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LRC resonant filter transfer function: module

fo = 1 Q = 50
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LRC resonant filter transfer function module
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LRC resonant filter: signal bandpass

Bandwidth for signals:   defined by the 3dB down points ω dL and ωdH

where |H(ωdL)|
2 = |H(ωdH)|2 = ½

For cases with Q >> 1 we can use the central lobe approximation

that is 

and we find  

The signal bandwidth thus is 
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Two basic advantages with respect to the CR-RC bandpass filter are quite evident: 

• No signal attenuation at the center frequency 

• Narrow filtering bandwidth even with moderately high Q values
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LRC resonant filter: noise bandpass
The bandwidth for white noise is defined by

In cases with Q >> 1 we can use for H(f) the central lobe approximation and 

take into account that |Hc(f)|
2 is with good approximation symmetrical with 

respect to the band center f0 , thus obtaining 

and therefore
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Pro’s and Con’s 

of real tuned filters
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Issues, Pro’s and Con’s of real tuned filters

• Real capacitors and inductors are not pure C and L. Their equivalent circuits 

include also finite resistances that model the internal sources of energy 

dissipation that inherently limit the Q of resonant circuits.

• In general, the dissipation is higher in components with higher value of L or C. 

Good quality capacitors  with low dissipation are available from pF to about 1 μF. 

Inductors are more problematic than capacitors. Good quality components are 

available from nH to a few 100nH. Even components with fairly small L (typically 

a few 10 nH) have non negligible internal resistance. 

• Stray reactances must not be overlooked. In discrete circuitry stray capacitances 

are in the order of pF and stray inductances are in the order of nH. In integrated 

circuits the values are much smaller, thanks to the very small physical size of 

the components.

• Since the resonance is  at                            ,  for obtaining a low frequency fo

high values of both L and C are required: in fact, with C=1 μF and L= 100 nH one 

gets  fo =1,26 MHz. Therefore, the Q values really obtained in the tuned filters 

progressively decrease as the desired resonant frequency decreases.

1 2of LCπ=
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Issues, Pro’s and Con’s of real tuned filters
• For high frequencies  fo > 100MHz values of Q > 10 are currently obtained, up to 

almost Q ≈ 100 with clever design and high quality components.

• For intermediate frequencies 1MHz < fo < 100MHz values up to Q ≈ 10 are 

obtained with careful design and implementation

• For fo < 1MHz it becomes progressively more difficult to obtain  high Q values as 

the frequency decreases. Anyway, even with moderate Q the performance of 

the tuned filters is remarkable and in many practical cases filters with Q ≈ 5 are 

really satisfactory. 

• For a given Q, note that the noise bandwidth is reduced as the resonant 

frequency fo is reduced:   ��� =
�

	


�

�
.

• The analysis of actual tuned filters can be more complicate, the parasitic 

parameters may have a significant role, more sophisticated circuit 

configurations may be adopted, such as active filters that exploit the feedback 

for avoiding large inductors and employing only capacitors. However, the simple 

basic configuration studied here illustrates well the typical features and 

performance of constant-parameter narrow-band filters. 

• Constant-parameter tuned filters are a simple and economical solution, widely

employed in prefiltering stages and other simple situations, but their use in 

high-performance filtering is hindered by some intrinsic drawbacks.
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Issues, Pro’s and Con’s of real tuned filters

• The accuracy and relative stability of fo directly depends on that of  the C and 

L values. Drift of fo due to aging and temperature must be kept smaller than 

the filter bandwidth, in order to avoid uncontrolled variation of the output signal

amplitude and phase. This may be really difficult in case of very narrow bandwidth.

In particular, strong phase variations are caused by even small variations of fo

because of the strong dϕ/df at band-center of filters with high Q

• Cascading simple filter stages for improving the cutoff characteristics is not practical 

for narrow-band filters, because they should have very accurately equal and stable fo.

• The value of C influences both the center frequency fo and the bandwidth ��
 , 

so that it is not easy to design a filter with specified fo and specified ��
 . 

• It is even more difficult to design a filter with adjustable fo and constant bandwidth 

��
 , as it is required for measuring power spectra and for other applications.

• In cases where the frequency of a narrow-band signal is not very stable, a filter 

with very narrow bandwidth can be employed only if its center frequency can be 

adjusted to track that of the signal. As above outlined, this is not easy to obtain.
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Appendix: 

LCR series resonant filter
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LRC series resonant filter
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LRC series resonant filter
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The poles of H(ω ) are

The lower is R << Ro 

the lower is the dissipation  

( Q � ∞  for  R � 0 )

Denoting by                                we have
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Note that the transfer function expressed in terms of the resonance frequency ωo and 

of the quality factor Q is equal to that of the parallel LCR resonator  
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