Sensors, Signals and Noise

COURSE OUTLINE

- Introduction
- Signals and Noise
- Filtering
- Sensors and electronics: PhotoDetectors PD1

TBD - Photon features and data

- Photon in the visible spectral range: features and data
- Photon statistics and noise
- Photon absorption in materials: absorption coefficient and penetration length
- Photon-Energy detectors: basic principle and main features
- Photon-Quanta detectors : basic principle and main features

TBD – Photon-Energy Detectors

- Detector components and structure
- Steady state response
- Heating transients and dynamic response
- Radiant Sensitivity or Spectral Responsivity
- Bolometers and Thermopiles
- Outline of imaging detectors: focal plane arrays

TBD – Photon-Quanta Detectors

- External photoelectric effect: Photo-emission of electrons from material in vacuum
- Internal photoelectric effect: photo-generation of free carriers in semiconductors
- Physics of the photoelectric effect: outline, main features, inherent limitations
- Photon detection efficiency (Quantum detection efficiency)
- Relation between Quantum detection efficiency and Spectral Responsivity

Photocathode: photoelectron emission in vacuum

Photocathode: photoelectron emission in vacuum

It's a 3-step process:

- 1. free electron generation
- 2. electron propagation through cathode
- 3. escape of electron into the vacuum

Semi-transparent photocathode

Semi-transparent photocathode

Photocathode: photoelectron emission in vacuum

Radiant Sensitivity or Spectral Responsivity

make possible to read directly from the diagram also the QDE

10

Quantum Detection Efficiency

Absorption Coefficient of Silicon

rv 2013/05/30

Simple planar device structure

Epitaxial planar device structure

- Deep diffused guard ring
- V_{BD} control by p+ implantation
- fully isolated structure
- Short diffusion tail

p-p⁺-n Double-Epitaxial device

- No guard-ring
- Active area defined by p+ implantation
- Adjustable V_{BD} and E-field
- suitable for integration and array detector
- Short diffusion tail (simple exponential)

Device in standard CMOS technology

Etched device structure for deep depletion layer (reach-through photodiode)

20

Improved reach-through device structure

Dark Current comparison: photocathode vs silicon PD

Data @ Room Temperature

Photocathode with diameter 1" (2,54 cm), current good devices:

- Primary Dark Current I_D < 1000 electrons / s
- i.e., current density $j_D < 200$ electrons / cm² s

= 2 x 10 $^{-6}$ elet / (μ m)² s

Silicon Photodiode with active area diameter 200 μ m, best available devices:

- Primary Dark Current I_D < 1000 electron / s
- i.e., current density $j_D < 4 \times 10^{+6}$ elet / cm² s =

= 4 x 10 ^{- 2} el (µm)⁻² s

The Si-photodiode DC density j_{D} is higher by a factor > 20.000

Dark Current of Si junction reverse biased

In reverse-biased Silicon junctions thermal generation rate of carriers occurs over all the depleted volume with volume density n_G

$$n_G = \frac{n_i}{2\tau}$$

- n_i intrinsic carrier density @ Room Temperature is $n_i = 1,45 \ge 10^{10} \text{ cm}^{-3}$
- *τ* minority carrier lifetime
 is strongly dependent on the technology,
 i.e on the fabrication process and on the starting material.
- Typical values
 - $\tau \sim \mu s$ ordinary integrated circuits
 - $\tau \sim ms$ high quality technology for detector devices
 - $\tau \sim s$ best available etechnology for detector devices

Dark Current of Si junction reverse biased

In a photodiode with round active area A (diameter D) and depletion layer thickness w the total generation rate is

$$n_{\rm D} = n_G A W$$

In order to limit it $n_D < n_{Dmax}$ we must limit the area A= $\pi D^2/4$

$$A < A_{max} = n_{Dmax} / n_G w$$

The corresponding limit for D can be expressed as a function of the thickness and of the miniority carrier lifetime (i.e of the actual device technology)

$$D \le D_{\max} = \sqrt{8n_{D\max}\tau/\pi n_i w}$$

Example: with w = 1 μ m, for keeping n_{Dmax} = 10 ³ el / s at room temperature

D < D_{max} = 420 $\tau^{1/2}$ (D in µm if τ is in seconds)

With good technology
$$\tau \sim 10 \text{ms} \rightarrow D_{\text{max}} = 42 \,\mu\text{m}$$
With excellent technology $\tau \sim 1\text{s} \rightarrow D_{\text{max}} = 420 \,\mu\text{m}$ With exceptional technology $\tau \sim 10\text{s} \rightarrow D_{\text{max}} = 1.33 \,\text{mm}$

Circuit Noise impairs sensitivity of Analog Detectors

Single-Photon Detectors bypass the Electronic Noise Limit

PhotoMultiplier Tube PMT

Semi-transparent photocathode

Optical Absorption of Semiconductors

Photon absorption and carrier collection

Photon Detection Efficiency: long λ detectors

Silicon Ionization Coefficients

